13th-note 数学II

ギリシア文字について

24 種類あるギリシア文字のうち、背景が灰色である文字は、数学 Ⅱ で用いられることがある.

英語	読み方	大文字	小文字	英語	 読み方	大文字	小文字
alpha	アルファ	A	α	nu	ニュー	N	ν
beta	ベータ	B	β	xi	クシー,グサイ	Ξ	ξ
gamma	ガンマ	Γ	γ	omicron	オミクロン	0	o
delta	デルタ	Δ	δ	pi	パイ	П	π , ϖ
epsilon	イプシロン	E	$\epsilon, arepsilon$	rho	п—	P	ρ, ϱ
zeta	ゼータ	Z	ζ	sigma	シグマ	Σ	σ, ς
eta	イータ	H	η	tau	タウ	T	τ
theta	シータ	Θ	θ , ϑ	upsilon	ユプシロン	Υ	v
iota	イオタ	I	ι	phi	ファイ	Φ	$\phi, arphi$
kappa	カッパ	K	κ	chi	カイ	X	χ
lambda	ラムダ	Λ	λ	psi	プシー, プサイ	Ψ	ψ
mu	ミュー	M	μ	omega	オメガ	Ω	ω

この教材を使う際は

- 表示:原著作者のクレジット(「13th-note」または「13th-note & www.ftext.org」)を表示してください。
- 非営利:この教材を営利目的で利用してはいけません. ただし, 学校・塾・家庭教師 の授業で利用するための無償配布は可能です.
- 継承:この教材を改変した結果生じた教材には、必ず、原著作者のクレジット (「13th-note」または「13th-note & www.ftext.org」) を表示してください。

目次

第1章	恒等:	式と式の証明	1
§1.1	式の	割り算....................................	1
	§1.	式の除法	1
	§2.	分数式	5
§1.2	恒等:	式	9
	§1.	恒等式 ~ 等しい 2 つの式	9
	§2.	多項式の割り算と恒等式	14
	§3.	連比・比例式と比例定数	17
	§4.	等式の証明	19
§1.3	不等:	式の証明	21
	§1.	不等式の性質	21
	§2.	不等式の証明の基礎	22
	§3.	いろいろな不等式の証明	24
	§4.	相加・相乗平均の定理	27
§1.4	第1	章の補足	30
	§1.	発展 「割り算の一意性」の証明	30
	§2.	発展 「係数比較法」の必要性について	31
	§3.	不等式の性質	32
§1.5	第1	章の解答	33

第1章 恒等式と式の証明

この章では、式の割り算を学んだ後、「そもそも式が等しいとはどういうことか」について考える。 そのうえで、2つの式が相等、大小関係を証明する方法について学ぶ。

1.1 式の割り算

 $31 \div 6$ という割り算には「5 余り 1」「 $5.1\dot{6}$ (= $5.16666\cdots$)」「 $\frac{31}{6}$ 」という 3 つの答え 方がある. 一方,式の割り算の場合は「余り」「分数式」の 2 通りの答え方がある.

1. 式の除法

A. 2式の割り算~ 筆算の書き方・その1

式の割り算は、筆算を用いて計算できる。 たとえば、 $(2x^3 + 5x^2 + 6x + 3) \div (x + 2)$ という割り算は、次のようになる。 余 \dot{y} が \dot{q} の数になっていることに注意しよう。

$$\frac{2x^{2}}{2x^{3} + 5x^{2} + 6x + 3} \Rightarrow x+2 \xrightarrow{\begin{array}{c} 2x^{2} \\ 2x^{3} + 5x^{2} + 6x \\ 2x^{3} + 4x^{2} \\ 2x^{3} + 6x & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x^{2} & + 6x & + 3 \\ 2x^{3} + 4x & + 3 & + 2x & + 2x \\ 3x^{2} + 6x & + 3 & + 2x & + 2x \\ 3x^{2} + 6x & + 3 & + 2x & + 2x \\ 3x^{2} + 6x & + 3 & + 2x & + 2x \\ 3x^{2} + 6x & + 3 & + 2x & + 2x \\ 3x^{2} + 6x & + 3 & + 2x & + 2x \\ 3x^{2} + 6x & + 3 & + 2x & + 4x \\ 3x^{2} + 6x & + 3 & + 2x & + 2x \\ 3x^{2} + 6x & + 2x & + 2x \\ 3x^{2} + 6x & + 2x & + 2x \\ 3x^{2} + 6x & + 2x & + 2x \\ 3x^{2} + 6x & + 2x & + 2x \\ 3x^{2} + 6x & + 2x & + 2x \\ 3x^{2} + 6x &$$

左のように、 商に負の数が表われる場合も あるので、注意しよう.

また,ある次数の項がないとき,たとえば $(x^3 + x + 2) \div (x - 1)$ の筆算は, x^2 の係数 の列を空けて右のようにする.

右の場合,
$$(x^3 + 0x^2 + x + 2) \div (x - 1)$$
を計算していると考えればよい.

【例題1】 次の割り算を計算し、商と余りを答えなさい.

1.
$$(x^3 + 2x^2 - 2x - 10) \div (x - 2)$$
 2. $(2x^3 + x + 5) \div (x + 1)$

2.
$$(2x^3 + x + 5) \div (x + 1)$$

3.
$$(x^3 + x^2y + y^3) \div (x - y)$$

【解答】 1.
$$x^2 + 4x + 6$$

 $x-2$) $x^3 + 2x^2 - 2x - 10$
 $x^3 - 2x^2$
 $4x^2 - 2x$
 $4x^2 - 8x$
 $6x - 10$
 $6x - 12$

商 $x^2 + 4x + 6$, 余り2

商 $2x^2 - 2x + 3$, 余り 2 商 $x^2 + 2xy + 2y^2$, 余り $3y^3$

$\mathbf{B.} \quad A = BQ + R$

たとえば、「 $(2x^3 + 5x^2 + 6x + 3) \div (x + 2) = 2x^2 + x + 4$ 余り -5」という結果は、次のように表せる.

 $2x^3 + 5x^2 + 6x + 3 = (x + 2)(2x^2 + x + 4) - 5$

このように, $\lceil A \div B = Q$ 余り R」の結果は $\lceil A = BQ + R$ 」の形で表わすことができる.

-【練習2:多項式の割り算の筆算~その1~】-

次の割り算を行い、A = BQ + Rの形で答えよ.

(1)
$$(4x^3 + 2x^2 + 3) \div (x + 2)$$

(1)
$$(4x^3 + 2x^2 + 3) \div (x + 2)$$
 (2) $(3x^3 - 2x^2 + x + 2) \div (x^2 - x - 2)$ (3) $(x^3 + 3xy^2 + 2y^3) \div (x + 2y)$

(3)
$$(x^3 + 3xy^2 + 2y^3) \div (x + 2y)$$

【解答】 1.
$$4x^2 - 6x + 12$$

 $x+2$) $4x^3 + 2x^2$ +3
 $4x^3 + 8x^2$ $-6x^2$ $-6x^2 - 12x$ $12x + 3$ $12x + 24$

$$\begin{array}{c}
2. \frac{3x + 1}{3x^3 - 2x^2 + x + 2} \\
\underline{3x^3 - 3x^2 - 6x} \\
\underline{x^2 + 7x + 2} \\
\underline{x^2 - x - 2} \\
8x + 4
\end{array}$$

3.
$$\begin{array}{r}
x^2 - 2xy + 7y^2 \\
x+2y \overline{\smash) x^3 + 3xy^2 + 2y^3} \\
\underline{x^3 + 2x^2y} \\
-2x^2y + 3xy^2 \\
\underline{-2x^2y - 4xy^2} \\
7xy^2 + 2y^3 \\
\underline{7xy^2 + 14y^3} \\
-12y^3
\end{array}$$

- 1. $4x^3 + 2x^2 + 3 = (x + 2)(4x^2 6x + 12) 21$
- 2. $3x^3 2x^2 + x + 2 = (x^2 x 2)(3x + 1) + 8x + 4$
- 3. $x^3 + 3xy^2 + 2y^3 = (x + 2y)(x^2 2xy + 7y^2) 12y^3$

C. 割り算の結果が 1 つに定まるには?

「 $13 \div 6 = 2 \cdots 1$ 」は正しいが、「 $13 \div 6 = 1 \cdots 7$ 」は間違っている.このように、余りのある割り算は、余りが割る数より値が小さいために、商と余りは1つに定まる.

式の割り算の場合には、「式の次数」が小さくなるようにする.

- 割り算の一意性 -

余りの式の次数が割る式の次数より小さいとき、商と余りが1つに定まる.

つまり、割られる式 A(x)、割る式 B(x) に対し、次を満たす商 O(x)、余り R(x) は 1 つに定まる.

$$A(x) = B(x)Q(x) + R(x)$$

(ただし、R(x) の次数は B(x) の次数より小さい)

(証明) は p.30 を参照のこと.

5 次式の A(x) を、2 次式の B(x) で割るとき、商 Q(x) は何次式、余り R(x) は何次式になるだろうか.

【解答】 Q(x) は 5-2=3 次式,余りは割る式 B(x) より次数が低いので 1 次式または 0 次式.

\mathbf{D} . A = BQ + R の利用

もし、多項式 F(x) を (2x+1) で割った商が x^2-2x+2 、余りが -4 になったならば

$$F(x) = (2x+1)(x^2 - 2x + 2) - 4$$

と表せる. この右辺を計算して $F(x) = 2x^3 - 3x^2 + 2x - 2$ とわかる.

また、多項式 $x^3 - 4x^2 + 6x - 15$ を B(x) で割って商が x - 3、余りが -6 になるならば、次のように書ける。

$$x^3 - 4x^2 + 6x - 15 = B(x)(x - 3) - 6$$
 \Leftrightarrow $x^3 - 4x^2 + 6x - 9 = B(x)(x - 3)$

つまり, $B(x) = (x^3 - 4x^2 + 6x - 9) \div (x - 3) = x^2 - x + 3$ と分かる.

 $\begin{array}{c}
x^{2} - x + 3 \\
x-3) x^{3} - 4x^{2} + 6x - 9 \\
\underline{x^{3} - 3x^{2}} \\
-x^{2} + 6x \\
\underline{-x^{2} + 3x} \\
3x - 9 \\
\underline{3x - 9} \\
0
\end{array}$

【例題 4】 それぞれの場合について多項式を求めなさい.

- 1. 多項式 A(x) を 2x + 3 で割った商が $x^2 + x 3$, 余りが -5 になる場合の A(x)
- 2. $x^3 x 3$ を多項式 B(x) で割って、商が x + 1、余りが 2x 1 になる場合の B(x)

【解答】

1.
$$A(x) = (2x+3)(x^2+x-3) - 5$$
 と表せるから
 $A(x) = 2x^3 + 2x^2 - 6x + 3x^2 + 3x - 9 - 5 = 2x^3 + 5x^2 - 3x - 14$

2.
$$x^3 - x - 3 = B(x)(x+1) + 2x - 1$$

 $\Leftrightarrow B(x)(x+1) = x^3 - 3x - 2$
 $\Leftrightarrow B(x) = (x^3 - 3x - 2) \div (x+1) = x^2 - x - 2$

$$\blacktriangleleft A = BQ + R$$
 の形で表わした

1.1 式の割り算…

E. 筆算の書き方・その2 ~ 係数だけを書く~

右のように、式の 割り算の筆算は、係 数だけを記しても計 算できる.

商の次数に気をつ けて答えよう.

商
$$2x - 1$$
, 余り $-9x + 8$
 $2x^3 + 3x^2 - 3x + 4$

$$(x^{3} + x + 2) \div (x - 1)$$

$$1 \quad -1 \quad) \quad \begin{array}{c|cccc} 1 & 1 & 2 & \\ \hline 1 & 0 & 1 & 2 \\ \hline 1 & -1 & \\ \hline & 1 & 1 \\ \hline & 1 & -1 \\ \hline & 2 & 2 \\ \hline & 2 & -2 \\ \hline & 4 \\ \end{array}$$

商
$$x^2 + x + 2$$
, 余り 4
 $x^3 + x + 2 = (x - 1)(x^2 + x + 2) + 4$

【例題 5】 次の割り算を、上の方法で計算し、結果をA = BQ + Rの形で答えなさい。

1.
$$(x^3 + 2x^2 - 2x - 10) \div (x - 2)$$
 2. $(2x^3 + x + 5) \div (x + 1)$

2.
$$(2x^3 + x + 5) \div (x + 1)$$

 $=(x^2+2x+4)(2x-1)-9x+8$

3.
$$(x^3 + x^2y + y^3) \div (x - y)$$

1.
$$x^3 + 2x^2 - 2x - 10 = (x - 2)(x^2 + 4x + 6) + 2$$

2.
$$2x^3 + x + 5 = (x + 1)(2x^2 - 2x + 3) + 2$$

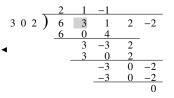
3.
$$x^3 + x^2y + y^3 = (x - y)(x^2 + 2xy + 2y^2) + 3y^3$$

-【練習 **6**:A = BQ + R の利用】-

- (1) A(x) を $x^2 6x 1$ で割ると、商が x + 2、余りが -4 である. A(x) を求めなさい.
- (2) $2x^3 4x^2 + 1$ を B(x) で割ると、商が x 1、余りが x 2 になる。B(x) を求めなさい。
- (3) $6x^4 + 3x^3 + x^2 1$ を C(x) で割ると、商は $3x^2 + 2$ 、余りは -2x + 1 になる。 C(x) を求めなさい。

【解答】

- (1) $A(x) = (x^2 6x 1)(x + 2) 4 = x^3 4x^2 13x 6$
- (2) $2x^3 4x^2 + 1 = B(x)(x-1) + x 2 \Leftrightarrow B(x)(x-1) = 2x^3 4x^2 x + 3$ であるから、 $B(x) = (2x^3 - 4x^2 - x + 3) \div (x - 1) = 2x^2 - 2x - 3$
- (3) $6x^4 + 3x^3 + x^2 1 = C(x)(3x^2 + 2) 2x + 1$ \Leftrightarrow $C(x)(3x^2 + 2) = 6x^4 + 3x^3 + x^2 + 2x - 2$ であるから、 $C(x) = (6x^4 + 3x^3 + x^2 + 2x - 2) \div (3x^2 + 2) = 2x^2 + x - 1$



1次式で割る多項式の割り算の場合には、『組立除法 (p.53)』を用いると、計算がより簡単になる において,

-【練習 7:多項式の割り算の筆算~その2~】------

 $A = 2x^3 + 2x^2 + 1$, B = 2x + 1 のとき, $A \div B$ を計算し, 結果を A = BO + R の形で表わせ.

【解答】 右の筆算から

$$2x^{3} + 2x^{2} + 1$$

$$= (2x + 1)\left(x^{2} + \frac{1}{2}x - \frac{1}{4}\right) + \frac{5}{4}$$

F. 式が「割り切れる」

多項式の割り算 F(x) ÷ G(x) の余りが 0 になるとき,F(x) は G(x) で割り切れる (devisible) という.

-【練習8: 割り切れる】───

 $A(x) = x^3 + 2ax^2 + b$, $B(x) = x^2 + x + 2$ のとき, $A(x) \div B(x)$ の商を Q(x), 余りを R(x) とする.

(1) O(x), R(x) を a, b を含む式で答えよ. (2) $A(x) \div B(x)$ が割り切れるとき, a, b を答えよ.

【解答】

(1) 右の筆算から

商について

$$Q(x) = x + (2a - 1)$$

余りについて

$$R(x) = (-2a - 1)x + (b - 4a + 2)$$

(2) R(x) の x の係数について -2a-1=0 より $a=-\frac{1}{2}$,

R(x) の定数項について b-4a+2=0 より b=4a-2=-4.

系数だけ書く筆算のやり方は、係数に文字がある式の割り算がやりやすく、ミスもしにくくなる.

分数式 2.

A. 分数式とは

 $(2x^3+5x^2+6x+3)\div(x+2)$ の結果は、 $\frac{2x^3+5x^2+6x+3}{x+2}$ と表わしてもよい。また、 $1\div(x+2)=\frac{1}{x+2}$ と表すこともできる.

このように、分母に多項式を含むような式を、分数式という. たとえば、次のような式は分数式である.

$$\frac{x-2}{x+3}$$
, $\frac{a+3}{a^2+a}$, $\frac{a}{bx}$

B. 分数式における約分・通分

また、分母と分子はできるだけ因数分解をする. 約分できる場合も約分する.

$$(x^2 - 6x + 5) \div (x^2 + 2x - 3) = \frac{x^2 - 6x + 5}{x^2 + 2x - 3} = \frac{(x - 1)(x - 5)}{(x + 3)(x - 1)} = \frac{x - 5}{x + 3}$$

分数式がこれ以上できないとき、既約であるという.

【例題 9】 以下の割り算・分数式を約分して、既約な分数式か、多項式にしなさい。 1. $\frac{a^2b^3}{a^3b}$ 2. $6a^2b^2 \div 3a^3b^3$ 3. $\frac{3x-6}{x^2-5x+6}$ 4. $(ka^2-kb^2)\div (ka-kb)$

1.
$$\frac{a^2b^3}{a^3b}$$

2.
$$6a^2b^2 \div 3a^3b^3$$

3.
$$\frac{3x-6}{x^2-5x+6}$$

$$4. (ka^2 - kb^2) \div (ka - kb)$$

【解答】

1. (与式) =
$$\frac{a^2b^{3b^2}}{3a_{\mu}} = \frac{b^2}{a}$$

1. (与式) =
$$\frac{a^2b^{3b^2}}{a^{3a}b} = \frac{b^2}{a}$$
 2. (与式) = $\frac{6^2a^2b^2}{3a^{3a}b^{3b}} = \frac{2}{ab}$

3.
$$(5\pi) = \frac{3(x-2)}{(x-2)(x-3)} = \frac{3}{x-3}$$

3. (与式) =
$$\frac{3(x-2)}{(x-2)(x-3)} = \frac{3}{x-3}$$

4. (与式) = $\frac{k(a^2-b^2)}{k(a-b)} = \frac{k(a-b)(a+b)}{k(a-b)} = a+b$

C. 分数式の掛け算・割り算

分数式の掛け算・割り算は、数と同じように出来る. 分母と分子に公約数(共通因子)があれば約分する.

$$\frac{x^2 - 3x + 2}{x^2 + 4x - 5} \times \frac{x^2 + 5x}{x^2 + x - 6} = \frac{(x - 1)(x - 2)}{(x - 1)(x + 5)} \times \frac{x(x + 5)}{(x - 2)(x + 3)}$$
$$= \frac{x}{x + 2}$$

$$\frac{x^2 - x - 2}{x^2 + 2x - 3} \div \frac{x^2 - 1}{x^2 + 5x + 6} = \frac{\cancel{(x + 1)}(x - 2)}{\cancel{(x + 3)}(x - 1)} \times \frac{\cancel{(x + 3)}(x + 2)}{\cancel{(x + 1)}(x - 1)}$$
$$= \frac{(x - 2)(x + 2)}{(x - 1)^2}$$

1.
$$\frac{x^2 + 6x + 8}{x^2 - 4x + 3} \times \frac{x - 1}{x + 4}$$
$$4 \quad \frac{x^2 + 5x + 6}{x^2 + 5x + 6} \cdot \frac{x^2 + x - 1}{x^2 + x - 1}$$

$$\frac{2x+1}{x^2-9x+20} \times \frac{x^2-3x-4}{2x^2-5x-3}$$

3.
$$\frac{x+2}{2x+2} \div \frac{x^2+7x+10}{x^2-1}$$

1.
$$\frac{x^2 + 6x + 8}{x^2 - 4x + 3} \times \frac{x - 1}{x + 4}$$
2.
$$\frac{2x + 1}{x^2 - 9x + 20} \times \frac{x^2 - 3x - 4}{2x^2 - 5x - 3}$$
3.
$$\frac{x + 2}{2x + 2} \div \frac{x^2 + 7x + 10}{x^2 - 1}$$
4.
$$\frac{x^2 + 5x + 6}{x^2 - 5x + 6} \div \frac{x^2 + x - 2}{x - 2}$$
5.
$$\frac{x^2 + 5x + 4}{x^2 + 5x + 6} \div \frac{x^2 - 4x + 3}{x^2 + x - 6} \times \frac{x^2 + x - 2}{x^2 + 2x - 8}$$

【解答】

1.
$$(5 \pm 1) = \frac{(x+2)(x+4)}{(x-1)(x-3)} \times \frac{x-1}{x+4} = \frac{x+2}{x-3}$$

2.
$$(5x) = \frac{2x+1}{(x-4)(x-5)} \times \frac{(x-4)(x+1)}{(2x+1)(x-3)} = \frac{x+1}{(x-5)(x-3)}$$

3.
$$(5x) = \frac{x+2}{2(x+1)} \times \frac{(x-1)(x+1)}{(x+2)(x+5)} = \frac{x-1}{2(x+5)}$$

4.
$$(4\pi) = \frac{(x+2)(x+3)}{(x-2)(x-3)} \times \frac{x-2}{(x+2)(x-1)} = \frac{x+3}{(x-3)(x-1)}$$

5.
$$(5\pm 1) = \frac{(x+1)(x+4)}{(x+2)(x+3)} \times \frac{(x+3)(x-2)}{(x-1)(x-3)} \times \frac{(x+2)(x-1)}{(x+4)(x-2)} = \frac{x+1}{x-3}$$

D. 分数式の足し算・引き算

通分を用いて、分数式どうしの足し算・引き算も計算する.

$$\frac{x-1}{x^2+3x+2} - \frac{x-2}{x^2+4x+3} = \frac{x-1}{(x+1)(x+2)} - \frac{x-2}{(x+1)(x+3)}$$

$$= \frac{(x-1)(x+3)}{(x+1)(x+2)(x+3)} - \frac{(x-2)(x+2)}{(x+1)(x+3)(x+2)}$$

$$= \frac{(x^2+2x-3)-(x^2-4)}{(x+1)(x+2)(x+3)} = \frac{2x+1}{(x+1)(x+2)(x+3)}$$
一分子の一()に注意!

…… 数の場合と同じように、通分によって分母を揃えて計算すればよい.

1.
$$\frac{1}{x-1} + \frac{2}{x+2}$$

4. $\frac{6x-9}{x^2} - \frac{5}{x+1}$

$$2. \ \frac{x^2 - 3}{x - \frac{1}{2}} + \frac{2x}{x - 1}$$

5.
$$\frac{x-1}{x^2+x-2} - \frac{1}{x^2+3x+2}$$

3.
$$\frac{x-1}{x^2+3x+2} + \frac{x-2}{x^2+4x+3}$$

1.
$$\frac{1}{x-1} + \frac{2}{x+2}$$
2. $\frac{x^2-3}{x-1} + \frac{2x}{x-1}$
3. $\frac{x-1}{x^2+3x+2} + \frac{x-2}{x^2+4x+3}$
4. $\frac{6x-9}{x^2-x-2} - \frac{5}{x+1}$
5. $\frac{3}{x^2+x-2} - \frac{1}{x^2+3x+2}$
6. $\frac{1}{x+1} + \frac{1}{(x+1)^2} - \frac{1}{(x+1)^3}$

【解答】

1. (与式) =
$$\frac{(x+2)+2(x-1)}{(x-1)(x+2)} = \frac{3x}{(x-1)(x+2)}$$
2. (与式) = $\frac{(x^2-3)+2x}{x-1} = \frac{(x+3)(x-1)}{x-1} = x+3$
3. (与式) = $\frac{x-1}{(x+1)(x+2)} + \frac{x-2}{(x+1)(x+3)}$
= $\frac{(x-1)(x+3)+(x-2)(x+2)}{(x+1)(x+3)(x+2)}$
= $\frac{(x^2+2x-3)+(x^2-4)}{(x+1)(x+2)(x+3)} = \frac{2x^2-2x-7}{(x+1)(x+2)(x+3)}$
4. (与式) = $\frac{6x-9}{(x-2)(x+1)} - \frac{5}{x+1}$
= $\frac{6x-9-5(x-2)}{(x-2)(x+1)} = \frac{x+1}{(x-2)(x+1)} = \frac{1}{x-2}$
5. (与式) = $\frac{3}{(x+2)(x-1)} - \frac{1}{(x+1)(x+2)}$
= $\frac{3(x+1)-(x-1)}{(x+1)(x+2)(x-1)}$
= $\frac{2x+4}{(x+1)(x+2)(x-1)} = \frac{2}{(x+1)(x+2)(x-1)} = \frac{2}{(x+1)(x-1)}$
6. (与式) = $\frac{(x+1)^2+(x+1)-1}{(x+1)^3}$
= $\frac{x^2+2x+1+x+1-1}{(x+1)^3} = \frac{x^2+3x+1}{(x+1)^3}$

E. 発展 分数式における「帯分数」

たとえば、 $29 \div 7 = 4$ 余り 1 であるから、 $\frac{29}{7} = 4\frac{1}{7}$ と帯分数で表わすことができる.

同じように、次のように分数式を考えることもできる.

$$\frac{x^2 + 2x}{x+1} = \frac{x(x+1) + x}{x+1} = \frac{x(x+1) + (x+1) - 1}{x+1} = x+1 - \frac{1}{x+1}$$

これは、 $(x^2 + 2x) \div (x + 1) = x + 1$ 余り -1 と対応しており、 $\frac{x^2 + 2x}{x + 1}$ を帯分数に直したと考えられる.

【練習 12:分数式の帯分数】

以下の等式が成り立つように、()には式または数値を、 には数値を入れなさい.

(1)
$$\frac{x+3}{x+1} = (\ \mathcal{F}\) + \frac{\boxed{1}}{x+1}$$

(2)
$$\frac{2x+3}{x+1} = (\dot{7}) + \frac{\pm}{x+1}$$

(3)
$$\frac{x^3 + 2x^2 + x + 3}{x + 1} = (\frac{\pi}{x}) + \frac{\pi}{x + 1}$$

【解答】

(1)
$$\frac{x+3}{x+1} = \frac{(x+1)+2}{x+1} = \frac{2}{(7)} \underline{1} + \frac{2}{x+1}$$

(2)
$$\frac{2x+3}{x+1} = \frac{2(x+1)+1}{x+1} = \frac{1}{(-1)} = \frac{1}{(-1)} = \frac{1}{(-1)}$$

- **◄** $(x+3) \div (x+1) = 1$ 余り 2 に対応 している。
- **◄** $(2x+3) \div (x+1) = 2$ 余り 1 に対応している.

(3)
$$(\cancel{\exists}\overrightarrow{x}) = \frac{x^2(x+1) + x^2 + x + 3}{x+1}$$

$$= \frac{x^2(x+1) + x(x+1) + 3}{x+1} = (\cancel{t}) \frac{x^2 + x}{x+1} + \frac{3}{x+1}$$

◄ $(x^3 + 2x^2 + x + 3) \div (x + 1) = x^2 + x$ 余り 3 に対応している.

たとえば、 $\frac{29}{7} - \frac{53}{13}$ は、帯分数に直すと計算がしやすい.

(I) 仮分数のまま計算する ←計算が多い

$$\frac{29}{7} - \frac{53}{13}$$
 ←分母の最小公倍数は9 1
$$= \frac{377}{91} - \frac{371}{91}$$
 ←分子はとても大きな数
$$= \frac{6}{91}$$

(II) 帯分数を使う ←29÷7=4余り1

$$\frac{29}{7} - \frac{53}{13} \qquad \text{から} \frac{29}{7} = 4\frac{1}{7} \text{ など}$$

$$= 4\frac{1}{7} - 4\frac{1}{13}$$

$$= \frac{13}{91} - \frac{7}{91} = \frac{6}{91} \quad \leftarrow 通分も簡単$$

同じようにして、 $\frac{x+2}{r+1} - \frac{x+3}{r+2}$ は次のように計算するとよい.

(I) そのまま計算する ←計算が多い

$$\frac{x+2}{x+1} - \frac{x+3}{x+2}$$

$$= \frac{(x+2)^2}{(x+1)(x+2)} - \frac{(x+3)(x+1)}{(x+1)(x+2)}$$

$$= \frac{x^2 + 4x + 4 - (x^2 + 4x + 3)}{(x+1)(x+2)}$$

$$= \frac{1}{(x+1)(x+2)}$$

(II) 帯分数を使う

$$\frac{\frac{x+2}{x+1} - \frac{x+3}{x+2}}{x+1} = \frac{\frac{(x+1)+1}{x+1} - \frac{(x+2)+1}{x+2}}{x+2}$$

$$= 1 + \frac{1}{x+1} - 1 - \frac{1}{x+2}$$

$$= \frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{(x+1)(x+2)}$$

【 (発) 展) 13:帯分数を利用した計算】

帯分数を利用して,次の計算をしなさい.

【解答】

①
$$(5x) = \frac{(x+1)+1}{x+1} - \frac{(x+2)+1}{x+2}$$

$$= 1 + \frac{1}{x+1} - \left(1 + \frac{1}{x+2}\right)$$

$$= \frac{1}{x+1} - \frac{1}{x+2} = \frac{(x+2)-(x+1)}{(x+1)(x+2)} = \frac{1}{(x+1)(x+2)}$$

▲1同士で消し合う

②
$$(= \frac{x(x+1)+1}{x+1} - \frac{x(x-1)+1}{x-1}$$

$$= x + \frac{1}{x+1} - \left(x + \frac{1}{x-1}\right)$$

$$= \frac{1}{x+1} - \frac{1}{x-1} = \frac{(x-1)-(x+1)}{(x+1)(x-1)} = -\frac{2}{(x+1)(x-1)}$$

▼ x 同士で消し合う

1.2 恒等式

恒等式 ~ 等しい2つの式

A. 式が「等しい」とは?

どんな x でも F(x) = G(x) が成立するとき、F(x) と G(x) は等しいと定義する、詳しくは次のようになる、

- 恒等式~式が「等しい」

(多項式とは限らない) 2つの式 F(x), G(x) があったとする. F(x), G(x) の定義域が等しく

定義域内のすべてのxに対してF(x) = G(x)

が成り立つとき、F(x) と G(x) は等しいと定義し、①を(x についての) 恒等式 (identity) という.

恒等式の例: $(x+2)(x-1) = x^2 + x - 2$, $\frac{1}{x-1} - \frac{1}{x+1} = \frac{2}{(x+1)(x-1)}$

恒等式でない例: $x^2 - x + 2 = x + 5$ $\leftarrow X = O$ など, ほとんどの X で等しくない

【例題 14】 次の等式について、恒等式かどうか答えなさい。

1.
$$x^2 - 1 = (x - 1)(x + 1)$$
 2. $x^2 - 2x + 1 = 0$

$$2. \ x^2 - 2x + 1 = 0$$

3.
$$x^2 + y^2 = x + y$$

【解答】

1. (右辺) = $x^2 - 1$ となり、左辺と式が一致し、**恒等式である**.

2. x = 0 のとき (左辺) = 1 \neq (右辺) となるので**恒等式でない**.

3. x = 1, y = -1 のとき, (左辺) = 2, (右辺) = 0 となるので恒等式で ない.

∢ *x* ≠ 1 のとき (左辺) ≠ (右辺) に

(左辺) ≠ (右辺) になる x, y は他 にも多数ある.

1.2 恒等式… 9

B. 「数値代入法」と「係数比較法」

2 つの多項式 $f(x) = x^2 + ax - 4$, $g(x) = x^2 + 2x + b$ が「等しい」ための a, b の条件を求めよう. これには,2 つの方法がある.

i. 数值代入法

f(0) = g(0) が等しいから -4 = b f(1) = g(1) が等しいから a - 3 = -1. よって,a = 2,b = -4 が必要と分かる. このとき*¹, $f(x) = x^2 + 2x - 4$, $g(x) = x^2 + 2x - 4$ となるから f(x) = g(x) は正しい.

ii. 係数比較法

 $f(x) = x^2 + ax - 4 = x^2 + 2x + b = g(x)$ においてx の係数を見比べてa = 2. 定数項を見比べて-4 = b. よって,a = 2,b = -4 と求められる.

後に見るように、上の2つのやり方は、どちらも身につけておくのがよい。

【例題 15】 $f(x) = x^2 + ax + 2$, $g(x) = (x - 1)^2 + b(x - 1)$ とする. f(x) = g(x) が恒等式となる条件について、以下の に適当な数値・式を答えなさい.

1. 数値代入法で求めよう. $f(0) = \mathbb{P}$, $g(0) = \mathbb{I}$ から $b = \mathbb{I}$ であり,

f(1) = エ , g(1) = オ から a = カ とわかる.

 $a = \begin{bmatrix} b \end{bmatrix}$, $b = \begin{bmatrix} b \end{bmatrix}$ のとき, $f(x) = g(x) = \begin{bmatrix} + \end{bmatrix}$ となって、確かに等しい.

2. 係数比較法で求めよう. g(x) を展開して降べきの順にすると g(x) = 2 になる.

f(x), g(x) の x の係数を比べて式 f を得て,定数項を比べて式 g を得る.

この2式を連立して, $a = \begin{bmatrix} \mathbf{y} \\ \mathbf{b} \end{bmatrix}$, $b = \begin{bmatrix} \mathbf{y} \\ \mathbf{c} \end{bmatrix}$ を得る.

【解答】

- 1. $f(0) = \underline{2}_{(7)}$, $g(0) = (-1)^2 + b \cdot (-1) = \underline{1 b}_{(1)}$ から, 2 = 1 b を解いて $b = \underline{-1}_{(7)}$ を得る. $f(1) = 1^2 + a + 2 = \underline{a + 3}_{(\mathbf{I})}$, $g(1) = \underline{0}_{(7)}$ から, a + 3 = 0 を解いて $a = \underline{-3}_{(7)}$ とわかる. a = -3, b = -1 のとき, $f(x) = \underline{x^2 3x + 2}_{(*)}$, $g(x) = (x-1)^2 (x-1) = x^2 3x + 2$ となるから,確かに等しい.
- 2. $g(x) = (x^2 2x + 1) + bx b = x^2 + (b 2)x + 1 b$ になる. f(x), g(x) の x の係数を比べて式 $\underline{a = b 2}_{(\tau)}$ を得て、定数項を比べて式 $\underline{2 = 1 b}_{(\neg)}$ を得る.

この2式を連立して、 $a = \underline{-3}_{(7)}, b = \underline{-1}_{(2)}$ を得る.

◄ *g*(*x*) を展開して降べきの順にした.

^{*1 「}このとき」以下の一文は,次ページで見るように,「数値代入法」を用いた場合は必ず書かなければならない.

C. 「数値代入法」の十分性

「数値代入法」を用いて、前ページのように f(0) = g(0), f(1) = g(1) から a, b の値を求めるだけでは、0, 1 以外の値で f(x) = g(x) を満たすかどうかわからない.

そのため、十分性を確かめるため実際に f(x) = g(x) を満たしているかどうか確認しなければならない *2 .

【例題 16】 次の等式が恒等式となるように、数値代入法を用いて a, b, c, d の値を定めなさい.

- 1. $x^2 + x + 1 = (x 1)^2 + a(x 1) + b$
- 2. $x^3 + ax^2 + x + 1 = (x+1)^3 + b(x+1)^2 + c(x+1)$
- 3. $(x+1)^3 + ax^2 + b(x-1) = x^3 + 4x^2 cx 5$

【解答】

- 1. 与式に x=1 を代入して 3=b, 与式に x=0 を代入して $1=1-a+b \Leftrightarrow a=3$. a=3, b=3 のとき (右辺) $=x^2+x+1$ となるので, a=b=3 は条件を満たす.
- 2. 与式に x = -1 に代入して -1 + a 1 + 1 = 0 より a = 1, 与式に x = 0 に代入して 1 = 1 + b + c \Leftrightarrow c = -b, 与式に x = -2 に代入して $(-2)^3 + a \cdot (-2)^2 + (-2) + 1 = (-1)^3 + b \cdot (-1)^2 + c \cdot (-1)$ $\Leftrightarrow -8 + 4a - 1 = -1 + b - c$

$$\Leftrightarrow -8 + 4 - 1 = -1 + b + b \qquad \therefore b = -2, c = 2$$

$$b = 0 - (1 - 2 - 2) \bigcirc b \stackrel{*}{\Rightarrow} (\pm 2\pi) = r^3 + r^2 + r + 1 - (\pm 2\pi) = r^3 + r^3 +$$

(a, b, c) = (1, -2, 2) のとき、(右辺) = $x^3 + x^2 + x + 1 = ($ 左辺) になるので、(a, b, c) = (1, -2, 2) は条件を満たす.

- 3. 与式に x = -1 を代入して $a 2b = -1 + 4 + c 5 \Leftrightarrow a 2b c = -2$ …… ① 与式に x = 0 を代入して, $1 b = -5 \Leftrightarrow b = 6$ …… ② 与式に x = 1 を代入して, $8 + a = 1 + 4 c 5 \Leftrightarrow a + c = -8$ …… ③ ②を①に代入して a c = 10, これと③を連立して, a = 1, c = -9.
 - (a, b, c) = (1, 6, -9) のとき (左辺) = $x^3 + 4x^2 + 9x 5 = (右辺)$ になるので、(a, b, c) = (1, 6, -9) は条件を満たす.

◆ a = 1, c = -b を代入した

—13th-note— 1.2 恒等式··· 11

 $^{*^2}$ 多項式の場合は「このとき f(x) = g(x) を確かに満たしている」の一言があればよい.

「係数比較法」の必要性

「係数比較法」から得られる条件は、恒等式であるための十分条件である. そして、多項式の場合は、これが恒等式であるための必要条件でもある.

- 「係数比較法」の必要性・

2 つの多項式 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, $g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$ があったとき、f(x) = g(x) が恒等式となる必要十分条件は

「すべての係数が等しくなること」 $(a_n = b_n, a_{n-1} = b_{n-1}, \dots, a_1 = b_1, a_0 = b_0)$ である.

この命題の証明は難しい. 詳しくは p.31 を参照のこと.

「多項式」以外では、同様の命題が成り立たないことがある.

【例題 17】 次の等式が恒等式となるように、係数比較法を用いて a, b, c, d の値を定めなさい。

1.
$$x^3 - x^2 + ax + b = (x^2 - 2x - 5)(x + c)$$

1.
$$x^3 - x^2 + ax + b = (x^2 - 2x - 5)(x + c)$$
 2. $5x^3 + ax^2 + bx + c = (x + 3)(dx^2 - 3x - 3)$

【解答】

 $= x^3 + (c-2)x^2 + (-2c-5)x - 5c$ であるので x^2 の係数を比べて -1 = c - 2, よって c = 1

> x の係数を比べて a = -2c - 5 = -7定数項を比べて b = -5c = -5 より, (a, b, c) = (-7, -5, 1)

(右辺) = $dx^3 - 3x^2 + 3dx^2 - 9x - 3x - 9$ $= dx^3 + (-3 + 3d)x^2 - 12x - 9$ であるので

 x^3 の係数を比べて 5 = d

 x^2 の係数を比べて $a = -3 + 3d = -3 + 3 \cdot 5 = 12$

xの係数を比べてb = -12

定数項を比べて c = -9 より、(a, b, c, d) = (12, -12, -9, 5)

- ◀展開した
- ▲降べきの順に揃えた,これで係数 が比較できる

【練習 18: 恒等式~その3~】

 $\frac{p}{r-1} + \frac{1}{r+1} = \frac{q}{r^2-1}$ が恒等式となるように p, q の値を定めなさい.

左辺を通分すると $\frac{p(x+1)+(x-1)}{x^2-1} = \frac{(p+1)x+(p-1)}{x^2-1}$ とな るので、両辺の分子を比べて (p+1)x+(p-1)=q が恒等式になればよい | ∢これを数値代入法で解いてもよい と分かる.

x の係数から $p+1=0 \Leftrightarrow p=-1$, 定数項から $p-1=q \Leftrightarrow q=-2$ とな る. つまり, p = -1, q = -2.

が, x = 1, -1 を代入するときに は、分子どうしが恒等式になるた めの計算でないといけない. なぜ なら、もとの分数式にはx = 1, -1を代入できない.

-【練習 19: 恒等式~その3~】-

次の等式が恒等式となるように、a, b, c, dの値を定めなさい.

(1)
$$a(x+1)^3 + 2(x+1)^2 = b(x-1)^3 + c(x-1)^2 + d(x-1)$$

(2)
$$(x+1)(x^2 + ax + 2) = (x+b)(x^2 + cx + 1)$$

(3)
$$a(x-1)(x-2) + b(x-2)(x-3) + c(x-3)(x-4) = 1$$

(4)
$$\frac{1}{(x+2)(x-1)} = \frac{a}{x+2} + \frac{b}{x-1}$$

【解答】

(1) x = -1 を両辺に代入して、0 = -8b + 4c - 2d …… (1)

$$x = 1$$
 を両辺に代入して、 $8a + 8 = 0 \Leftrightarrow a = -1$ ②

$$x = 0$$
 を両辺に代入して、 $a + 2 = -b + c - d \cdots$ ③

$$x = 2$$
 を両辺に代入して、 $27a + 18 = b + c + d$ … ④

②を①, ③, ④ に代入して整理すると

$$\begin{cases} 4b - 2c + d = 0 & \dots & \text{(§)} \\ b - c + d = -1 & \text{(§)} \\ b + c + d = -9 & \text{(§)} \end{cases}$$

- ⑦から $(-1) + (-4) + d = -9 \Leftrightarrow d = -4$, これらを左辺、右辺に代入し て展開すると一致するので、(a, b, c, d) = (-1, -1, -4, -4).
- (2) $(\not = \vec{y}) = x^3 + ax^2 + 2x + x^2 + ax + 2 = x^3 + (a+1)x^2 + (2+a)x + 2$ $(\pi_i \pi) = x^3 + cx^2 + x + bx^2 + bcx + b = x^3 + (b+c)x^2 + (bc+1)x + b$ の両辺を見比べて、定数項からb=2x の係数から 2+a=2c+1, x^2 の係数から a+1=2+c
 - この2式を連立して解いて, (a, b, c) = (3, 2, 2)

(3)
$$x = 2$$
 を両辺に代入して $c \cdot (-1) \cdot (-2) = 1 \Leftrightarrow c = \frac{1}{2}$,

$$x = 3$$
 を両辺に代入して $a \cdot 2 \cdot 1 = 1 \Leftrightarrow a = \frac{1}{2}$,

x = 1 を両辺に代入して $b \cdot 2 + \frac{1}{2} \cdot 6 = 1 \Leftrightarrow 2b = -2$ から b = -2-1, これらを代入すると(左辺) = 1 となり、両辺が一致するので

$$(a, b, c) = \left(\frac{1}{2}, -1, \frac{1}{2}\right)$$

(4) 右辺を通分すると

$$\frac{a}{x+2} + \frac{b}{x-1} = \frac{a(x-1) + b(x+2)}{(x+2)(x-1)}$$
$$= \frac{(a+b)x + (-a+2b)}{(x+2)(x-1)}$$

これと左辺の分子どうしを見比べてxの係数からa+b=0なのでb=-a, 定数項から $-a+2b=1\Leftrightarrow -a-2a=1$, よって, $a=-\frac{1}{2}$, $b=\frac{1}{2}$.

【 **暗記 20**: k の値に関わらず直線が通る点】

直線 kx - 2x + y - 2k = 0 が、k の値に関わらず通る点 (x, y) を求めよ.

【解答】 等式 kx-2x+y-2k=0 が k についての恒等式となればよいので $kx - 2x + y - 2k = 0 \Leftrightarrow (x - 2)k - 2x + y = 0$

k の係数から $x-2=0 \Leftrightarrow x=2$, 定数項から $-2x+y=0 \Leftrightarrow y=2x=4$. 以 上から、等式 kx - 2x + v - 2k = 0 は k の値に関わらず (x, v) = (2, 4) を満 たすので、これが求める点になる.

▲係数比較をするため k について降べきの順にした。

…… 上の例題について、『一定の条件を満たす直線の集まり(第3章 p.89)』において、より詳しく

多項式の割り算と恒等式 2.

A. 剰余の定理

多項式を 1 次式で割った場合を考えて,次の**剰余の定理** (polynomial remainder theorem) を得る.

剰余の定理

F(x) を x-a で割った余りは F(a) になる. また, F(x) を ax-b で割った余りは $F\left(\frac{b}{a}\right)$ になる.

(証明) F(x) を ax-b で割って、商が O(x)、余りは r になったとする. このとき、F(x) = (ax-b)O(x) + rという恒等式が成り立ち, $x = \frac{b}{a}$ のとき

(左辺) =
$$F\left(\frac{b}{a}\right)$$
, (右辺) = $\left(a \cdot \frac{b}{a} - b\right)Q(a) + r = 0 + r = r$

となるので、 $F\left(\frac{b}{a}\right) = r$ が分かり後半部分が示された. a=1 とすれば、前半部分も示された.

【例題 21】 $F(x) = 4x^4 - 2x^3 + 1$, $G(x) = x^4 + ax^2 + 1$ とする.

- 1. F(x) を x-1 で割った余りを求めよ. 2. F(x) を 2x+3 で割った余りを求めよ.
- 3. G(x) を x-2 で割った余りが 5 になるとき,a の値を求めよ.

【解答】 剰余の定理より

- 1. F(1) = 4 2 + 1 = 3
- 2. $F\left(-\frac{3}{2}\right) = 4 \cdot \frac{81}{16} 2 \cdot \left(-\frac{27}{8}\right) + 1 = \frac{81}{4} + \frac{27}{4} + 1 = 28$
- 3. G(x) を x-2 で割った余りは G(2) = 16 + 4a + 1 = 4a + 17 になる. こ れが 5 に等しいので、 $4a + 17 = 5 \Leftrightarrow a = -3$.

B. 数値代入法の応用 ~ 割り算の余りを求める

 $(x^{13}+1) \div (x^2-1)$ は筆算でも計算できるが、次のように考えることもできる.

 $(x^{13}+1)\div(x^2-1)$ で割った商を Q(x) とする. 2 次式 x^2-1 で割った余りは 1 次式になるので

$$x^{13} + 1 = (x^2 - 1)Q(x) + (ax + b)$$

..... 1)

と表すことができる. ①はxについての恒等式であるから, x=1を代入して

$$\Leftrightarrow 2 = a + b$$

が成り立つ. また, ①に x = -1 を代入して

$$\Leftrightarrow 0 = -a + b$$

..... (3)

が成り立つ. ②, ③ を連立して a = b = 1 を得るので, $(x^{13} + 1) \div (x^2 - 1)$ の余りは ax + b = x + 1 と分かる.

【例題 22】 $(x^{10}-2x^9+x-1)\div(x^2-3x+2)$ の余りを上の方法で求めよ.

【解答】 商を Q(x), 余りを ax + b とおく. $x^2 - 3x + 2 = (x - 1)(x - 2)$ か \triangleleft 割る式 $x^2 - 3x + 2$ は 2 次式なの ら、次の等式が成り立つ。

$$x^{10} - 2x^9 + x - 1 = (x - 1)(x - 2)Q(x) + ax + b$$

で, 余りは1次式になる.

- ①の両辺にx = 1を代入して $1 2 + 1 1 = 0 \cdot Q(1) + a + b$
- ①の両辺に x = 2 を代入して $2^{10} 2^{10} + 2 1 = 0 \cdot O(2) + 2a + b$

て解けば $\begin{cases} a+b=-1\\ 2a+b=1 \end{cases} \Leftrightarrow \begin{cases} a=2\\ b=-3 \end{cases}$

よって、求める余りはax + b = 2x - 3と分かる.

-【練習 23:多項式の割り算~その1~】─

F(x) を x-2 で割った余りが 1, x+1 で割った余りが -2 のとき, F(x) を (x-2)(x+1) で割った余りを 求めなさい.

【解答】 F(x) を (x-2)(x+1) で割った商を Q(x), 余りを ax+b とおくと

$$F(x) = (x - 2)(x + 1)Q(x) + ax + b$$

と表せる. ①にx = 2を代入して

$$F(2) = 0 \cdot Q(2) + (a \cdot 2 + b) \Leftrightarrow F(2) = 2a + b$$

一方, x-2 で割った余りが 1 であるから, 剰余の定理によって F(2)=1 と も分かり、2a+b=1. また

$$F(-1) = 0 \cdot Q(-1) + a \cdot (-1) + b \Leftrightarrow F(-1) = -a + b$$

であるが, x+1 で割った余りが -2 であるから F(-1) = -2 と分かり,

-a+b=-2. 2式を連立してa=1,b=-1とわかる.

つまり, F(x) を (x-2)(x+1) で割った余りは x-1 になる.

-【練習 24:多項式の割り算~その2~】-

- (1) $x^9 + x^7 + x^5 + 1$ を $x^2 1$ で割った余りを求めよ.
- (2) F(x) を x-3 で割った余りが 4, x+2 で割った余りが -6 のとき, F(x) を (x-3)(x+2) で割った余りを求めよ.

C. 発展 式の除法と式の値

 $x=2+\sqrt{3}$ のときの $F(x)=x^3+2x^2-4x+1$ の値 $F\left(2+\sqrt{3}\right)$ は、次のように計算することが出来る.

まず、 $x=2+\sqrt{3}$ を解にもつ2次方程式を求める. これは

$$x - 2 = \sqrt{3} \Leftrightarrow (x - 2)^2 = 3 \Leftrightarrow x^2 - 4x + 1 = 0$$

と変形して、式 x^2-4x+1 は、 $x=2+\sqrt{3}$ のときに 0 になると分かる. 次に、 $(x^3+2x^2-4x+1)\div(x^2-4x+1)$ を計算する.右のような筆算によって、次の等式を得る.

$$F(x) = (x^3 + 2x^2 - 4x + 1) = (x^2 - 4x + 1)(x + 6) + 19x - 5$$

この両辺に $x = 2 + \sqrt{3}$ を代入すると $x^2 - 4x + 1 = 0$ であるから

$$F(2 + \sqrt{3}) = 0 + 19(2 + \sqrt{3}) - 5 = 33 + 19\sqrt{3}$$

となって簡単に計算できる.

この計算は、「微分」で3次関数を学んだときなどに重宝される.

-【練習 25:式の除法と式の値】-

- (1) $x = 3 \sqrt{2}$ を解に持つような 2 次方程式を 1 つ求めよ.
- (2) $F(x) = x^3 5x^2 2x + 5$ のとき、 $F(3 \sqrt{2})$ を求めよ.

D. 発展 係数比較法の応用

 $F(x) = (x-1)^2(x+2)$ で割った余りを $ax^2 + bx + c$ とする.

- ① $F(x) = (x-1)^2(x+2)Q(x) + ax^2 + bx + c$ を変形し、 $F(x) = (x-1)^2$ ア + イ の形にしなさい。ただし、イ は a, b, c を用いた 1 次式とする。
- ② F(x) を $(x-1)^2$ で割った余りが -3x+2, x+2 で割った余りが -1 であるとき, a, b, c を求めよ.

····」 上の問題は,数学 III で「関数の積の微分」を用いた別解がある.

3. 連比・比例式と比例定数

A. 連比とは何か

3 つ以上の数の比を,**連比**という.また,x:y=2:3 や x:y:z=4:5:6 など,比・連比が等しいことを表わす等式を,**比例式**という.

たとえば、x = 2, y = 4, z = 8 のとき、連比 x:y:z は連比 2:4:8=1:2:4 と等しく、比例式 x:y:z=1:2:4 が成り立つ。

B. 比例定数

比例式 x: y = 2:3 は、「2:3 を何倍かすれば x: y になる」も意味する.この「何倍か」を k 倍とおき「ある実数 $k(\neq 0)$ が存在して、x = 2k、y = 3k」と表すことができる.

同じようにして、x:y:z=4:5:6であることは、次のように言い換えられる.

「ある実数 $k(\neq 0)$ が存在して, x = 4k, y = 5k, z = 6k」

このときの、0でない実数 k を比例定数という.

-【例題 27】 - - - - - -

- 1. a:b:c=1:2:3 のとき
 - 1) a, b, c を比例定数 k を用いて表せ.
- 2) 連比 (a+b): (b+c): (c+a) を求めよ.
- 2. (x + y) : (y + z) : (z + x) = 3 : 6 : 7 であるとき
 - 1) x+y, y+z, z+x を比例定数 k を用いて表せ. また, x+y+z を k を用いて表わせ.
 - 2) 連比 x:y:z を求めよ.

3) $\frac{x+2y+3z}{3x+2y+z}$ の値を求めよ.

【解答】

- 1. 1) a = k, b = 2k, c = 3k
 - 2) (a + b) : (b + c) : (c + a) = 3k : 5k : 4k = 3 : 5 : 4
- 2. 1) x + y = 3k, y + z = 6k, z + x = 7k である. この 3 式を左辺同士, 右辺同士それぞれ足して

$$(x+y) + (y+z) + (z+x) = 3k + 6k + 7k$$

$$\Leftrightarrow 2(x+y+z) = 16k$$

$$\Leftrightarrow x+y+z = 8k \qquad \cdots \qquad \boxed{1}$$

- 2) ①とx + y = 3k から、3k + z = 8k となるのでz = 5k.
 - ①とy+z=6kから、x+6k=8kとなるのでx=2k.
 - ①とz+x=7kから、7k+y=8kとなるのでy=k.

以上より, x:y:z=2k:k:5k=2:1:5

3) x = 2k, y = k, z = 5k を代入して

$$(5 \pm 1) = \frac{2k + 2k + 15k}{6k + 2k + 5k} = \frac{19k}{13k} = \frac{19}{13}$$

◆たとえば、a+b=k+2k=3k

C. もう1つの比例式の形

2 つ以上の分数が等しいような式 $\frac{x}{2}=\frac{y}{3}, \ \frac{x}{4}=\frac{y}{5}=\frac{z}{6}$ は次のように変形できるので、比例式と言うこ とがある.

$$\frac{x}{2} = \frac{y}{3} = k$$
 とおくと, $\frac{x}{2} = k$ から $x = 2k$,, $\frac{y}{3} = k$ から $y = 3k$ となり, $x : y = 2 : 3$ を満たす. $\frac{x}{4} = \frac{y}{5} = \frac{z}{6} = k$ とおくと, $x = 4k$, $y = 5k$, $z = 6k$ となり, $x : y : z = 4 : 5 : 6$ を満たす.

つまり、等しい分数の値をkとおくと、結果的に、kが比例定数として働く.

-【例題 28】

- 1. $\frac{a}{3} = \frac{b}{5} = \frac{c}{7}$ のとき 1) a, b, c を比例定数 k を用いて表わせ.
- 2) $\frac{a+b}{b+c}$ の値を求めよ.
- 2. $\frac{x+y}{3} = \frac{y+z}{5} = \frac{z+x}{6}$ であるとき 1) x+y, y+z, z+x を比例定数 k を用いて表せ. また, x+y+z を k を用いて表わせ.
 - 2) 連比 x:y:zを求めよ.

3) $\frac{x^2 + y^2 + z^2}{xy + yz + zx}$ の値を求めよ.

【解答】

1. 1)
$$\frac{a}{3} = \frac{b}{5} = \frac{c}{7} = k$$
 $\geq 3k$, $b = 5k$, $c = 7k$.

2)
$$($$
5 \pm $) = $\frac{3k + 5k}{5k + 7k} = \frac{8k}{12k} = \frac{2}{3}$$

2. 1)
$$\frac{x+y}{3} = \frac{y+z}{5} = \frac{z+x}{6} = k \ge 3$$

x + y = 3k, y + z = 5k, z + x = 6k. この3式を左辺同士, 右辺 同士それぞれ足して

$$(x + y) + (y + z) + (z + x) = 3k + 5k + 6k$$

$$\Leftrightarrow$$
 2(x + y + z) = 14k

$$\Leftrightarrow x + y + z = 7k$$

2) ①
$$\geq x + y = 3k \text{ his}, 3k + z = 7k \text{ } \geq \text{ to Som} z = 4k.$$

①と
$$v + z = 5k$$
 から、 $x + 5k = 7k$ となるので $x = 2k$.

①と
$$z + x = 6k$$
から、 $6k + y = 7k$ となるので $y = k$.

以上より、x: y: z = 2k: k: 4k = 2:1:4

3)
$$x = 2k$$
, $y = k$, $z = 4k$ を代入して

(与式) =
$$\frac{(2k)^2 + k^2 + (4k)^2}{2k \cdot k + k \cdot 4k + 4k \cdot 2k}$$

= $\frac{21k^2}{14k^2} = \frac{3}{2}$

4. 等式の証明

A. 左辺、右辺をそれぞれ計算する

等式を証明するには、左辺と右辺をそれぞれ計算し、一致することを確認すればよい.

-【練習 29:等式の証明】-

- (1) 等式 $(ax + by)^2 + (ay bx)^2 = (a^2 + b^2)(x^2 + y^2)$ を証明せよ.
- (2) 等式 $(a^2 b^2)(x^2 y^2) = (ax + by)^2 (ay + bx)^2$ を証明せよ.

【解答】

(1) (左辺) =
$$a^2x^2 + 2axby + b^2y^2 + a^2y^2 - 2aybx + b^2x^2$$

= $a^2x^2 + b^2y^2 + a^2y^2 + b^2x^2$
(右辺) = $a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2$

(2) (左辺) =
$$a^2x^2 - a^2y^2 - b^2x^2 + b^2y^2$$

(右辺) = $a^2x^2 + 2axby + b^2y^2 - (a^2y^2 + 2aybx + b^2x^2)$
= $a^2x^2 - a^2y^2 - b^2x^2 + b^2y^2$

B. ある条件式の元での等式の証明

条件式があるときは, 文字を消去すれば良い.

【例題 30】 x+y+z=0 のとき, $x^2+y^2+z^2=2(z^2-xy)$ を示そう.

 $z = \mathbf{P}$ であるから、これを代入すると(左辺) = $\mathbf{1}$ 、(右辺) = $\mathbf{0}$ となり、(左辺) = $\mathbf{1}$ となり、(左辺) = $\mathbf{1}$ が示された.

【解答】 $z = \underline{-x - y}_{(P)}$ であるから

(左辺) =
$$x^2 + y^2 + (-x - y)^2$$

= $x^2 + y^2 + (x^2 + 2xy + y^2) = 2x^2 + 2xy + 2y^2$

(右辺) =
$$2\{(-x-y)^2 - xy\}$$

= $2(x^2 + 2xy + y^2 - xy) = 2x^2 + 2xy + 2y^2$ (ウ)

となり、(左辺) = (右辺) が示された.

∢次のような別解もある.

(左辺) - (右辺)
=
$$x^2 + y^2 + z^2 - 2(z^2 - xy)$$

= $x^2 + y^2 + 2xy - z^2$
= $(x + y)^2 - z^2 = (-z)^2 - z^2 = 0$

なので, (左辺) = (右辺).

【練習 31: 等式の証明~その1~】-

x + y + z = 0 のとき, $x^3 + y^3 + z^3 = 3xyz$ を示しなさい.

【解答】 z = -(x + v) であるから

(左辺) =
$$x^3 + y^3 + \{-(x+y)\}^3$$
 (右辺) = $3xy(-x-y)$
= $x^3 + y^3 + (-1)^3(x+y)^3$ = $-3x^2y - 3xy^2$
= $x^3 + y^3 - (x^3 + 3x^2y + 3xy^2 + y^3)$
= $-3x^2y - 3xy^2$ よって (左辺) = (右辺)
が示された.

C. 比例式を含む等式の証明

条件式に比例式や比が含まれている場合は、比例定数 (p.17) をもちいるとよい. たとえば、a:b=c:d であるとき $\frac{a+2b}{c+2d}=\frac{3a-b}{3c-d}$ を示してみよう.

a:b=c:d から、比例定数 k を用いて a=ck, b=dk とおける、すると

$$\frac{a+2b}{c+2d} = \frac{ck+2dk}{c+2d} = \frac{k(c+2d)}{c+2d} = k, \qquad \frac{3a-b}{3c-d} = \frac{3ck-dk}{3c-d} = \frac{k(3c-d)}{3c-d} = k$$

$$\frac{3a - b}{3c - d} = \frac{3ck - dk}{3c - d} = \frac{k(3c - d)}{3c - d} = k$$

となるから, $\frac{a+2b}{c+2d} = \frac{3a-b}{3c-d}$ が示された.

【練習 32:比例式を含む等式の証明】

 $\frac{a}{x} = \frac{b}{y}$ のとき,等式 $\frac{x+y}{a+b} = \frac{x-y}{a-b}$ を示せ.

【解答】 $\frac{a}{x} = \frac{b}{y} = k$ とおくと, a = kx, b = ky である. よって

$$\frac{x+y}{a+b} = \frac{x+y}{kx+ky} = \frac{x+y}{k(x+y)} = \frac{1}{k}$$
$$\frac{x-y}{a-b} = \frac{x-y}{kx-ky} = \frac{x-y}{k(x-y)} = \frac{1}{k}$$

となるから、 $\frac{x+y}{a+b} = \frac{x-y}{a-b}$ が示された.

1. 不等式の性質

A. a, b の正負と $a+b, a-b, ab, \frac{a}{b}$ の正負

a > 0, b > 0 ならば, a + b > 0, ab > 0, $\frac{a}{b} > 0$ であるが, a - b は正にも負にも 0 にもなりうる. 一方, a > 0, b < 0 のときは, a - b > 0 である.

【 **聞配 33**:四則演算と正負】--

以下の空欄に、「正」「負」「(正負が) 定まらない」のいずれかを入れ、表を完成させなさい.

	a + b	a-b	ab	$\frac{a}{b}$
a > 0, b > 0 のとき	正	定まらない	正	正
a > 0, b < 0 のとき		正		
a < 0, b < 0 のとき				

【解答】

	a+b	a-b	ab	$\frac{a}{b}$
a > 0, b > 0 のとき	正	定まらない	正	正
a > 0, b < 0 のとき	定まらない	正	負	負
a < 0, b < 0 のとき	負	定まらない	正	正

B. a < c, b < d のときの, a + b, c + d の大小, ab, cd の大小

1 < a, 2 < b であるとき、1 + 2 < a + b が成り立つから 3 < a + b である。また、 $1 \times 2 < ab$ が成り立つから 2 < ab である。これらを一般化して、以下の事実が成り立つ。

- 不等式の性質 -

i)
$$a < c, b < d \Rightarrow a + b < c + d \leftarrow$$
どんな場合も、小十小く大十大

ii)
$$\mathbf{0} < a < c$$
, $\mathbf{0} < b < d \Rightarrow ab < cd$ ←正の値ならば、小×小<大×大

i) の証明は p.22 を, ii) の証明は p.32 を参照のこと.

【例題 34】 a>1, b>2 とする. 次の不等式の真偽を述べ、偽ならば反例を挙げよ.

1. 2a + b > 4

2. $a^2 + a + b > 4$

3. 2 < 4a - b

【解答】

- 1. 2a > 2, b > 2 から、2a + b > 2 + 2 = 4 なので真.
- 2. $a^2 > 1$, a > 1, b > 2 から, $a^2 + a + b > 1 + 1 + 2 = 4$ なので真.
- 3. 偽である. 反例はa = 2, b = 7など.

◀他にも多数の反例がある.

1.3 不等式の証明… 21

-【発展 35:2数の大小関係】-

次の命題の真偽を述べ、偽ならば反例を挙げよ.

- (1) $a < 0 < c, 0 < b < d \Rightarrow ab < cd$
- ③ $0 < a < b \Rightarrow \frac{1}{b} < \frac{1}{a}$

- ② $a < 0 < c, b < 0 < d \Rightarrow ab < cd$

2. 不等式の証明の基礎

A. (左辺) - (右辺), または, (右辺) - (左辺)

不等式を証明するときは、(左辺) - (右辺) や(右辺) - (左辺) の正負を考えるとよい。

(例) a > 0, b > 0 のとき、3a + 4b > 2a + 3b が成り立つことを示せ.

(左辺)
$$-$$
 (右辺) $=$ ($3a + 4b$) $-$ ($2a + 3b$) $= a + b > 0$ ←仮定から, $0 > 0$, $b > 0$

よって、(左辺) – (右辺) > 0 であるから、3a + 4b > 2a + 3b は示された.

上の不等式が正しいことは、直感的に分かるかもしれない. しかし、「証明」が必要ならば上のように書こう.

-【練習 36:不等式の証明~その1~】-

- (1) 0 < a, 0 < b のとき, 2a 3b < 4a 2b を示しなさい.
- (2) a < b であるとき、 $\frac{3a + 2b}{5} < \frac{2a + 3b}{5}$ を示しなさい.
- (3) a < b, c < d のとき, a + c < b + d を示しなさい (p.21『不等式の性質 i)』).

【解答】

- (1) (右辺) (左辺) = (4a 2b) (2a 3b) = 2a + b > 0 である (仮定から, 0 < a, 0 < b). よって、与式は示された.
- (2) (右辺) (左辺) = $\frac{(2a+3b)-(3a+2b)}{5} = \frac{b-a}{5} > 0$ (仮定から, b-a>0). よって、与式は示された.
- (3) (左辺) (右辺) = a + c b d = (a b) + (c d) < 0 (仮定から, a b < 0, c d < 0). よって、与式は示された.

B. 等号条件

≦, ≧を含む不等式においては、等号=が成り立つ必要十分条件*3をできるだけ記すとよい.

【例題 37】 $(a+1)^2 \ge 4a$ であることを示せ、また、等号はいつ成立するか、

【解答】 (左辺) – (右辺) = $(a^2 + 2a + 1) – 4a = a^2 – 2a + 1 = (a – 1)^2 \ge 0$ であるから,不等式 $(a + 1)^2 \ge 4a$ が示された.

$$(a-1)^2 = 0$$
 を解いて、 $a = 1$ が等号条件になる.

C. $(左辺)^2 - (右辺)^2$, または, $(右辺)^2 - (左辺)^2$

2つの正の値は、2乗しても大小関係が変わらないので、次のような証明ができる (p.??).

(例) x > 0, y > 0 のとき、 $\sqrt{3x + 2y} < \sqrt{3x} + \sqrt{2y}$ が成り立つことを示せ.

(右辺)² – (左辺)² =
$$(\sqrt{3x} + \sqrt{2y})^2 - (\sqrt{3x + 2y})^2$$

= $(3x + 2\sqrt{6xy} + 2y) - (3x + 2y) = 2\sqrt{6xy} > 0$

よって $(左辺)^2$ < $(右辺)^2$ である. 今, 左辺も右辺も正であるから(左辺) < (右辺) が示された.

-【練習 38:不等式の証明~その2~】-

- (1) $0 \le a$ のとき、 $\sqrt{a^2 + a + 1} \le a + 1$ を示し、等号条件も示しなさい.
- (2) 0 < a, 0 < b のとき、 $\sqrt{a^2 + b^2} < a + b$ を示しなさい

【解答】

- (1) $(右辺)^2 (左辺)^2 = (a+1)^2 (a^2+a+1) = a^2+2a+1-a^2-a-1 = a \ge 0$ よって, $(左辺)^2 \le (右辺)^2$ である. $0 \le a$ から左辺,右辺とも正であるから, $(左辺) \le (右辺)$ が示された.また,等号条件はa=0.
- (2) $(右辺)^2 (左辺)^2 = (a+b)^2 (a^2+b^2) = a^2 + 2ab + b^2 a^2 b^2 = 2ab > 0$ よって、 $(左辺)^2 < (右辺)^2$ である。0 < a, 0 < b より左辺、右辺とも 正であるから、(左辺) < (右辺) が示された。
 - ····· 等号条件は,上のように明記していなくても,できるだけ書いた方がよい.

^{*3} しばしば, 等号条件と言われる.

 $^{*^{4}}$ (左辺) 2 < (右辺) 2 のとき、実際には0 < (右辺) でさえあれば、(左辺) < (右辺) が成り立つ.

3. いろいろな不等式の証明

A. 因数分解の利用

(左辺) - (右辺) や $(左辺)^2 - (右辺)^2$ が、正または負であると示すに、因数分解が有用になることがある。

(例) 1 < a, 1 < b のとき, ab + 1 > a + b を示せ.

(左辺)
$$-$$
 (右辺) $= ab + 1 - (a + b) = ab - a - b + 1$
 $= a(b - 1) - (b - 1) = (a - 1)(b - 1)$

a-1>0, b-1>0 であるから (a-1)(b-1)>0 になる. よって、(左辺) > (右辺) が示された.

以下の性質によって、因数分解が有効になっている.

因数分解の利用と等号条件 -

 $A \ge 0$, $B \ge 0$ ならば, $AB \ge 0$ であり, 等号条件は $AB = 0 \Leftrightarrow A = 0$ または B = 0 である.

-【練習 39:不等式の証明~その3~】-

- (1) 0 < A < B のとき、 $A^2 < B^2$ であることを示せ.
- (2) a < b, c < d のとき, ac + bd > ad + bc であることを示せ.

【解答】

- (1) (右辺) (左辺) = (B+A)(B-A) である. 0 < A, 0 < B から 0 < B+A, A < B から 0 < B-A であるから, (B+A)(B-A) > 0 である.
- (2) (左辺) (右辺) = ac + bd (ad + bc)= ac + bd - ad - bc= a(c - d) + b(d - c) = (a - b)(c - d)

 $a-b<0,\ c-d<0$ であるから (a-b)(c-d)>0 になる. よって, (左辺) > (右辺) が示された.

上の (1) から「2 つの正の値は、2 乗しても大小関係が変わらない」ことが分かる (p.23).

B. 平方完成の利用

式の正負を示すために、平方完成も有効である.

(**例1**) $a^2 > a - 1$ が成り立つことを示せ.

(左辺)
$$-$$
 (右辺) $= a^2 - (a - 1) = a^2 - a + 1$
$$= \left(a - \frac{1}{2}\right)^2 - \frac{1}{4} + 1$$

$$= \left(a - \frac{1}{2}\right)^2 + \frac{3}{4} > 0 \leftarrow 2$$
 乗した値に $\frac{3}{4}$ を足せばやはり正

よって, (左辺) > (右辺) であり, 命題は示された.

(**例2**) $a^2 + b^2 \ge 2a + 2b - 2$ が成り立つことを示せ.

(左辺)
$$-$$
 (右辺) $= a^2 + b^2 - 2a - 2b + 2$
 $= (a^2 - 2a) + (b^2 - 2b) + 2 \leftarrow 0$ だけでまとめ,りだけでもまとめた
 $= (a-1)^2 + (b-1)^2 \ge 0 \leftarrow 0$ だけで平方完成し,りだけでも平方完成した

よって、(左辺) \geq (右辺) である.等号は、 $(a-1)^2=(b-1)^2=0$ のとき、つまり a=b=1 のときに成立する.

以下の性質によって, 平方完成が有効になっている.

平方完成の利用と等号条件 -

c > 0 のとき, $A^2 + c > 0$ である.

 $A^2 + B^2 \ge 0$ であり、等号条件は $A^2 + B^2 = 0 \Leftrightarrow A = 0$ かつ B = 0 である.

-【練習 40: 不等式の証明~その4~】-

次の不等式を示せ、また、(2) は等号条件も答えなさい。

(1)
$$a^2 > -a - 1$$

(2)
$$a^2 + ab + b^2 \ge 0$$

(3)
$$a^2 + b^2 > a + b - 1$$

【解答】

(1) (左辺)
$$-$$
 (右辺) $= a^2 + a + 1 = \left(a + \frac{1}{2}\right)^2 - \frac{1}{4} + 1\left(a + \frac{1}{2}\right)^2 + \frac{3}{4} > 0$ よって、(左辺) $>$ (右辺) となり、示された.

(2) (左辺) =
$$\left(a + \frac{b}{2}\right)^2 - \frac{b^2}{4} + b^2 = \left(a + \frac{b}{2}\right)^2 + \frac{3}{4}b^2 \ge 0$$

 $a + \frac{b}{2} = 0$ かつ $b = 0$ のとき等号を満たし、等号条件は、 $a = b = 0$.
(3) (左辺) - (右辺) = $a^2 - a + b^2 - b + 1$

(3)
$$(£ i 2) - (£ i 2) = a^2 - a + b^2 - b + 1$$

$$= \left(a - \frac{1}{2} \right)^2 - \frac{1}{4} + \left(b - \frac{1}{2} \right)^2 - \frac{1}{4} + 1$$

$$= \left(a - \frac{1}{2} \right)^2 + \left(b - \frac{1}{2} \right)^2 + \frac{1}{2} > 0$$

よって, (左辺) > (右辺) となり, 示された.

【練習41:不等式の証明~その5~】

a > b ならば $a^3 > b^3$ であることを示せ.

【解答】 (左辺) – (右辺) = $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ について, a > bよりa-b>0である.

また、 $a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2\geq 0$ である. 等号条件は、a=b=0 のと きであるが、a>b から等号条件を満たすことはない. よって $a^2+ab+b^2>0$ $| \blacktriangleleft a+\frac{b}{2}=0, \sim b=0$ を連立する である.

以上より $(a-b)(a^2+ab+b^2) > 0$ となり、(左辺) > (右辺) は示された.

と, a = b = 0 になる.

 $x^2 + y^2 + z^2 \ge xy + yz + zx$ を示せ.

【解答】

$$= x^2 + y^2 + z^2 - xy - yz - zx$$

$$= \frac{1}{2}x^2 - xy + \frac{1}{2}y^2 + \frac{1}{2}y^2 - yz + \frac{1}{2}z^2 + \frac{1}{2}z^2 - zx + \frac{1}{2}x^2$$

$$= \frac{1}{2}(x^2 - 2xy + y^2) + \frac{1}{2}(y^2 - 2yz + z^2) + \frac{1}{2}(z^2 - 2zx + x^2)$$

$$= \frac{1}{2}(x-y)^2 + \frac{1}{2}(y-z)^2 + \frac{1}{2}(z-x)^2 \ge 0$$

等号成立はx-y=y-z=z-x=0のとき、つまり、x=y=zのとき、

C. 凳 展 三角不等式

どんな実数 a, b に対しても、 $|a+b| \le |a| + |b|$ が成り立つ. これを三角不等式と言う.

-【発展 43:三角不等式】

 $|a+b| \le |a| + |b|$ を示せ.

【解答】 両辺が正であるから、 $(右辺)^2 - (左辺)^2 \ge 0$ を示せばよい。

(右辺)² - (左辺)² =
$$|a|^2 + 2|a||b| + |b|^2 - |a+b|^2$$

= $a^2 + 2|ab| + b^2 - (a+b)^2$
= $a^2 + 2|ab| + b^2 - a^2 - 2ab - b^2 = 2(|ab| - ab)$

ab はどんな値でも $ab \leq |ab|$ になるから, $|ab| - ab \geq 0$ が示された. 等号 は, |ab| = ab のとき, つまり $ab \ge 0$ のときに成り立つ.

4. 相加・相乗平均の定理

A. 相加平均とは、相乗平均とは

a.b の相加平均は $\frac{a+b}{2}$ で計算できる. つまり、これまで「平均」と呼んできた値に等しい.

a.b の相乗平均は \sqrt{ab} で定義される. \sqrt{ab} を 2 回掛ければ, a,b の掛け算に一致する.

【例題 44】 次の 2 数の相加平均、相乗平均をそれぞれ求めなさい. ただし、 $a \neq 0$ とする.

3.
$$a, \frac{1}{a}$$

【解答】

1. 相加平均は $\frac{8+18}{2}=13$, 相乗平均は $\sqrt{8\cdot 18}=2\sqrt{2}\times 3\sqrt{2}=12$

2. 相加平均は $\frac{3+5}{2} = 4$,相乗平均は $\sqrt{3\cdot 5} = \sqrt{15}$

3. 相加平均は
$$\frac{a+\frac{1}{a}}{2} = \frac{a}{2} + \frac{1}{2a}$$
, 相乗平均は $\sqrt{a \cdot \frac{1}{a}} = 1$

◀相加平均は $\frac{a^2+1}{2a}$ でもよい.

B. 相加平均と相乗平均の大小

負でないどんな2数も、相加平均は相乗平均より小さくない、詳しくは、以下が成り立つ.

相加・相乗平均の定理

 $0 \le a, \ 0 \le b$ のとき、2 数の相加平均 $\frac{a+b}{2}$ は相乗平均 \sqrt{ab} 以上であり

$$\frac{a+b}{2} \ge \sqrt{ab}$$

が必ず成り立つ. また、等号が成り立つ必要十分条件はa = bである.

(証明) $0 \le a$, $0 \le b$ であるから

(左辺)
$$-$$
 (右辺) $=$ $\frac{\left(\sqrt{a}\right)^2 + \left(\sqrt{b}\right)^2}{2} - \sqrt{a}\sqrt{b} = \frac{\left(\sqrt{a}\right)^2 - 2\sqrt{a}\sqrt{b} + \left(\sqrt{b}\right)^2}{2} = \frac{\left(\sqrt{a} - \sqrt{b}\right)^2}{2} \ge 0$

等号は $\sqrt{a} = \sqrt{b} \Leftrightarrow a = b$ のときのみ成り立つ.

【例題 45】 a,b が以下の値のとき、相加・相乗平均の定理 $\frac{a+b}{2} \geq \sqrt{ab}$ からどのような不等式の成立 が示されるか.

1.
$$a = 5$$
, $b = 3$

2.
$$a = x^2$$
, $b = 9$

3.
$$a = 2x$$
, $b = \frac{2}{x}$

1.
$$\frac{5+3}{2} \ge \sqrt{5\cdot 3} \Leftrightarrow 4 \ge \sqrt{15}$$

2.
$$\frac{x^2 + 9}{2} \ge \sqrt{x^2 \cdot 9} \Leftrightarrow x^2 + 9 \ge 6x$$

3.
$$\frac{2x + \frac{2}{x}}{2} \ge \sqrt{2x \cdot \frac{2}{x}} \Leftrightarrow x + \frac{1}{x} \ge 2$$

C. 相加・相乗平均の定理を用いた最小値の計算

相加・相乗平均の定理の両辺を2倍して、以下の不等式が成り立つ.

相加・相乗平均の定理~変形版-

 $0 \le a, 0 \le b$ のとき、次の不等式が成り立つ.

 $a+b \ge 2\sqrt{ab}$ (等号条件は a=b)

(**例**) a > 0 のとき, $4a + \frac{1}{a}$ の最小値を求めてみよう.

4a > 0 と $\frac{1}{a} > 0$ であるから、相加・相乗平均の定理によって

$$4a + \frac{1}{a} \ge 2\sqrt{4a \cdot \frac{1}{a}} = 4$$

である.等号は $4a=\frac{1}{a}$ のとき成り立つ.これを解くと $4a^2=1\Leftrightarrow a^2=\frac{1}{4}$ になる.

a > 0 なので、 $a = \frac{1}{2}$ のとき最小値 4 をとると分かる.

-【練習 46:相加・相乗平均の定理の利用~その1~】-

x>0 とする. 以下の式の最小値と、そのときのxの値を求めよ.

$$(1) x + \frac{1}{x}$$

(2)
$$2x + \frac{3}{2x}$$

(3)
$$\frac{x^2+2}{x}$$

(4)
$$(2+x)\left(1+\frac{2}{x}\right)$$

【解答】

(1) x > 0, $\frac{1}{x} > 0$ より, 相加・相乗平均の定理から

$$x + \frac{1}{x} \ge 2\sqrt{x \cdot \frac{1}{x}} = 2$$

等号条件は $x = \frac{1}{x} \Leftrightarrow x^2 = 1$ であり、x > 0 から x = 1, つまり、x = 1 のとき、最小値 2 をとる.

(2) 2x > 0, $\frac{3}{2x} > 0$ より、相加・相乗平均の定理から

$$2x + \frac{3}{2x} \ge 2\sqrt{2x \cdot \frac{3}{2x}} = 2\sqrt{3}$$

等号条件は $2x = \frac{3}{2x} \Leftrightarrow x^2 = \frac{3}{4}$ であり、x > 0 から $x = \frac{\sqrt{3}}{2}$ 、つま

り, $x = \frac{\sqrt{3}}{2}$ のとき, 最小値 $2\sqrt{3}$ をとる.

(3) (与式) = $\frac{x^2}{x} + \frac{2}{x} = x + \frac{2}{x}$ であり、x > 0、 $\frac{2}{x} > 0$ より、相加・相乗平均の定理から

(与式) =
$$x + \frac{2}{x} \ge 2\sqrt{x \cdot \frac{2}{x}} = 2\sqrt{2}$$

等号条件は $x = \frac{2}{x} \Leftrightarrow x^2 = 2$ であり, x > 0 から $x = \sqrt{2}$, つまり, $x = \sqrt{2}$ のとき,最小値 $2\sqrt{2}$ をとる.

(4) 与式を展開すると

(与式) = 2 +
$$\frac{4}{x}$$
 + x + 2 = x + $\frac{4}{x}$ + 4

となる. x > 0, $\frac{4}{x} > 0$ より, 相加・相乗平均の定理から

(与式) =
$$x + \frac{4}{x} + 4 \ge 2\sqrt{x \cdot \frac{4}{x}} + 4 = 4 + 4 = 8$$

等号条件は $x = \frac{4}{x} \Leftrightarrow x^2 = 4$ であり、 x > 0 から x = 2, つまり、 x = 2 のとき、最小値 8 をとる。

- $\blacktriangleleft x + \frac{4}{x}$ の最小値に 4 を足せば,与式の最小値が求められることが分かる.
- $\blacktriangleleft x + \frac{4}{x} \ge 4$ の両辺に +4 を付け加えた形になっている.

x > -1 のとき, $x + \frac{1}{x+1}$ の最小値を求めよ.

【解答】 x+1>0, $\frac{1}{x+1}>0$ であるから、相加・相乗平均の定理より

(与式) =
$$x + 1 + \frac{1}{x+1} - 1 \ge 2\sqrt{(x+1) \cdot \frac{1}{x+1}} - 1 = 1$$

等号条件は $x+1=\frac{1}{x+1}\Leftrightarrow (x+1)^2=1$ であり,0< x+1 から $x+1=1\Leftrightarrow x=0$,つまり,x=0 のとき最小値 1 をとる.

■この一文で解答を始めるには、直 後の式変形に気づく必要がある。

1. 魚風 「割り算の一意性」の証明

多項式 A(x) の次数を、 $\deg A$ で表わす. たとえば、 $f(x) = x^3 + 2x^2$ ならば $\deg f = 3$ となる. この記号を用いて、以下の事実を証明する. ただし、数学 B で学ぶ『数学的帰納法』を必要とする*5.

- 割り算の一意性・

余りの式の次数が割る式の次数より小さいとき、商と余りが1つに定まる.

つまり、割られる式 A(x)、割る式 B(x) に対し、次を満たす商 Q(x)、余り R(x) は 1 つに定まる.

$$A(x) = B(x)Q(x) + R(x)$$

(ただし、 $\deg R < \deg B$)

(余りの存在証明) 次の事実を数学的帰納法で示せばよい.

「どんな多項式 A(x) に対しても、A(x) - R(x) が B(x) で割り切れ、 $\deg R < \deg B$ であるような R(x) が存在する」

- i) $\deg A < \deg B$ のとき、R(x) = A(x) とおけば、 $A(x) R(x) = 0 = B(x) \cdot 0$ から条件①を満たす.
- ii) $n \in \deg B 1$ 以上の整数とする. $\deg A = n$ のときに条件①を満たすと仮定すれば、 $\deg A = n + 1$ のときに条件①を満たすことを示す.

つまり、「 $\deg A = n$ であるどんな A(x) に対しても $\deg R < \deg B$ である R(x) が存在し、A(x) - R(x) は B(x) で割り切れる」と仮定する.

 $\deg A = n+1$ のとき, $A(x) = ax^{n+1} + (n$ 次以下の多項式), $B(x) = bx^m + (m-1$ 次以下の多項式)とおく. ここで $F(x) = A(x) - \frac{a}{b}x^{n+1-m}B(x)$ ・・・・・・・ ② とおくと

$$F(x) = ax^{n+1} + (n 次以下の多項式) - \frac{a}{b}x^{n+1-m}(bx^m + (m-1)\chi以下の多項式))$$

= $ax^{n+1} + (n \chi)$ 次以下の多項式) $-ax^{n+1} - (n \chi)$ 次以下の多項式)
= $(n \chi)$ 以下の多項式)

仮定より、F(x) に対して $\deg r < \deg Q$ となる r(x) が存在し、F(x) - r(x) = B(x)q(x) と書ける.これに②を代入して

$$A(x) - \frac{a}{b}x^{n+1-m}B(x) - r(x) = B(x)q(x)$$

$$\Leftrightarrow A(x) - r(x) = B(x)\left\{q(x) + \frac{a}{b}x^{n+1-m}\right\}$$

となり、A(x) に対しては r(x) が、条件を満たすと分かる。 $\deg A = n+1$ を満たすどんな A(x) でも正しいから、 $\deg A = n+1$ のときも条件を満たす.

以上, i), ii) より, 数学的帰納法によって, すべての A(x) について余り R(x) が存在すると分かる.

金りが存在することは、実際の割り算の手順を見れば明らかではある。しかし、ありとあらゆる 多項式の割り算で、余りが存在することを「証明」するには、上のような証明を必要とする。

^{*5} 実際のところ, 高校数学の道具だけを使って証明しているが, 証明の考え方そのものは, 高校数学の範囲を超えている.

(余りの一意性の証明) $A(x) \div B(x)$ の割り算の結果が

$$A(x) = B(x)Q_1(x) + R_1(x),$$
 $A(x) = B(x)Q_2(x) + R_2(x)$

の2通りあったとする.このとき,この2式の左辺同士,右辺どうしを引いて

$$0 = B(x)\{Q_1(x) - Q_2(x)\} + R_1(x) - R_2(x) \Leftrightarrow B(x)\{Q_1(x) - Q_2(x)\} = R_2(x) - R_1(x)$$

すると、 $\deg R_1 < \deg B$ 、 $\deg R_2 < \deg B$ より、右辺の次数は $\deg B$ より小さい.一方、 $Q_1(x) - Q_2(x) \neq 0$ ならば、左辺の次数は $\deg B$ 以上になってしまうので、 $Q_1(x) - Q_2(x) = 0$ でないといけない.

つまり、
$$0 = R_2(x) - R_1(x)$$
 となって $R_1(x) = R_2(x)$ となる. よって、2 通りの答えは一致する.

2. 寒寒 「係数比較法」の必要性について

数学 B で学ぶ『数学的帰納法』、数学 III で学ぶ『関数の連続性』を用い、以下の事実を示す*6.

- 「係数比較法」の必要性 -

2 つの多項式 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$, $g(x) = b_n x^n + b_{n-1} x^{n-1} + \cdots + b_1 x + b_0$ があったとき,f(x) = g(x) が恒等式となる必要十分条件は

「すべての係数が等しくなること」 $(a_n = b_n, a_{n-1} = b_{n-1}, \dots, a_1 = b_1, a_0 = b_0)$ である.

(証明)「すべての係数が等しい」ならば「f(x)=g(x) が恒等式」は明らか、この命題の逆を示すには, $f(x)-g(x)=(a_n-b_n)x^n+(a_{n-1}-b_{n-1})x^{n-1}+\cdots+(a_1-b_1)x+(a_0-b_0)=0$ が恒等式になるとき,「 $a_n-b_n=0$, $a_{n-1}-b_{n-1}=0$, … , $a_1-b_1=0$, $a_0-b_0=0$ 」を示せばよいから,次の命題

「
$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$
 が恒等式ならば、 $a_n = a_{n-1} = \dots = a_1 = a_0 = 0$ である」

を示せばよいと分かる. これを数学的帰納法で示す.

- i) $\deg f = 1$ のとき, $a_1x + a_0 = 0$ が恒等式なので x = 0 を代入して $a_0 = 0$, x = 1 を代入して $a_1 + a_0 = 0$ から $a_1 = 0$ となり, 示された.
- ii) $\deg f = k$ のとき、どんな多項式も正しいとする. $\deg f = k+1$ である多項式について

$$f(x) = a_{k+1}x^{k+1} + a_kx^k + \dots + a_1x + a_0 = 0$$

が恒等式であるとする. ④は x = 0 で成り立つので、 $f(0) = a_0 = 0$ である. ここで、 $c \neq 0$ のとき $f(c) = 0 \Leftrightarrow a_{k+1}c^{k+1} + a_kc^k + \cdots + a_1c = 0 \Leftrightarrow a_{k+1}c^k + a_kc^{k-1} + \cdots + a_1 = 0$

であるから, $g(x) = a_{k+1}x^k + a_kx^{k-1} + \cdots + a_1 = 0$ は 0 でないすべての c について g(c) = 0 になる. ここで,関数 g(x) は多項式であるから連続関数であり, $\lim_{x\to 0}g(x) = g(0)$ を満たす. $c \neq 0$ ならば g(c) = 0 であるから, $g(0) = \lim_{x\to 0}g(x) = 0$ となる.つまり,g(x) = 0 はすべての x で成り立つので恒等式になる.よって,仮定より,g(x) の係数 a_{k+1} , a_k , \cdots , a_1 はすべて 0 である.

以上より, $a_{k+1} = a_k = \cdots = a_1 = a_0 = 0$ であるから, $\deg f = k+1$ のときも③は示された.

i), ii) によって、示すべき命題③は示された.

^{*6 『}割り算の一意性』と同じく、高校数学の道具だけを用いた証明だが、証明の考え方そのものは、高校数学の範囲を超えている.

3. 不等式の性質

数学 I で学んだように (p.53), 不等号は以下の性質をもっていた.

- i) すべての実数 c で $a < b \Leftrightarrow a + c < b + c$, a c < b c
- ii) $0 < c \circ b \ge a < b \Leftrightarrow ac < bc$, $\frac{a}{c} < \frac{b}{c}$
- iii) c < 0 のとき $a < b \Leftrightarrow ac > bc$, $\frac{a}{c} > \frac{b}{c}$ ←逆符号!

このうち, ii) の性質を用いると,以下の事実を示すことができる.

-【発展 48:不等式の性質 ii)の証明】——

0 < a < c, 0 < b < d のとき, ab < cd を示そう.

【解答】 a < c において、0 < b より ab < bc である.

 $\pm c$, b < d c $\pm b$, 0 < c $\pm b$ bc < cd c b.

この2式を合わせて、ab < bc < cd であるから、ab < cd が示された.

第1章の解答 1.5

【練習:多項式の割り算~その2~】(p.16)

(1) $x^9 + x^7 + x^5 + 1 = (x^2 - 1)Q(x) + ax + b \ge 3 < .$

この両辺に x=1 を代入して、4=a+b

この両辺に x = -1 を代入して, -2 = -a + b となる.

2 式を連立して b=1, a=3 とわかるので、求める余りは 3x+1.

(2) 剰余の定理より F(3) = 4, F(-2) = -6 である. F(x) = (x-3)(x+2)Q(x) + ax + b ◀ 剰余の定理を用いずに とおく.

この両辺に x = 3 を代入して 4 = 3a + b

この両辺に x = -2 を代入して -6 = -2a + b

2 式を連立して a = 2, b = -2 となるので、求める**余りは 2x - 2**.

 $F(x) = (x - 3)Q_1(x) + 4$

$$F(x) = (x+2)Q_2(x) - 6$$

F(x) = (x - 3)(x + 2)Q(x) + ax + b

の 3 式から, a, b を求めると考え てもよい.

【練習:式の除法と式の値】(p.16)

(1)
$$x = 3 - \sqrt{2}$$
 を変形すると

$$x-3 = -\sqrt{2} \Leftrightarrow (x-3)^2 = 2$$
$$\Leftrightarrow x^2 - 6x + 7 = 0$$

(2)
$$F(x) \div (x^2 - 6x + 7)$$
 の割り算をすると、右欄外のようになるので

$$F(x) = (x^2 - 6x + 7)(x + 1) - 3x - 2$$

となる. この両辺に $x=3-\sqrt{2}$ を代入して.

$$F(3 - \sqrt{2}) = 0 - 3(3 - \sqrt{2}) - 2 = -11 + 3\sqrt{2}$$

【発展: 多項式の割り算~その3~】(p.16)

① $F(x) = (x-1)^2(x+2)Q(x) + ax^2 + bx + c$ を $(x-1)^2$ で割った商が ア 、余り が | になる. $(x-1)^2(x+2)Q(x)$ は $(x-1)^2$ で割り切れるので, ax^2+bx+c を $(x-1)^2$ で割ればよい. すると右欄外のようになるので $ax^2 + bx + c =$ $a(x-1)^2 + (b+2a)x + (c-a)$ になる. よって

$$F(x) = (x-1)^{2}(x+2)Q(x) + a(x-1)^{2} + (b+2a)x + (c-a)$$

$$= (x-1)^{2} \left\{ \underbrace{(x+2)Q(x) + a}_{(\mathcal{T})} \right\} + \underbrace{(b+2a)x + (c-a)}_{(\mathcal{T})}$$

② F(x) を $(x-1)^2$ で割った余りが -3x+2 であるから, 恒等式 (b+2a)x+(c-a) = -3x + 2 が成り立つ. x の係数より b + 2a = -3 ………①, 定数 項より c-a=2 …… ②. また, x+2 で割った余りが -1 であるから, $F(x) = (x-1)^2(x+2)Q(x) + ax^2 + bx + c$ の両辺に -2 を代入して

$$-1 = 4a - 2b + c \qquad \cdots \qquad 3$$

が成り立つ。①から b = -3 - 2a、②から c = 2 + a であり、これらを③に代 入すると

$$4a - 2(-3 - 2a) + (2 + a) = -1 \Leftrightarrow 9a = -9$$

よって a = -1, b = -1, c = 1 と分かるから、求める**余りは** $-x^2 - x + 1$ である.

1 - 2 1 a

【発展:2数の大小関係】(p.22)

① 真

実際, ab < 0, 0 < cd である.

- ② 偽. 反例は (a, b, c, d) = (-4, -4, 3, 3)
- ③ 真 4 真

 $0 < \frac{1}{c} < \frac{1}{a}, \ 0 < b < d$ から、『不等式の性質 ii)』を用いた.

▲2 つの正の数は、逆数を取ると大 小関係が逆になる