平方根

目次

1	準備.	
2	平方根	$rac{1}{2} = 2$ 乗する前はいくつ? $rac{1}{2}$
	2.1	平方根とは何か、根号とは何か
	2.2	平方根の大きさ比べ4
	2.3	負の平方根5
	2.4	有理数と無理数 7
3	まとめ	>その1
4	平方框	その掛け算, 割り算と分母の有理化
	4.1	平方根の掛け算・割り算 9
	4.2	分母の有理化 11
	4.3	およその値を求める
5	平方框	その四則計算 13
6	まとめ)その2
7	応用間	月題
	7.1	$\sqrt{}$ が自然数になるためには? $$ の中が、自然数の 2 乗になればよい $$ 19
	7.2	展開公式と平方根 — 根号を文字と思って公式を使い、計算する 20
	7.3	$a+b,\ ab,\ a-b$ を利用した計算
	7.4	整数部分と小数部分

この教材を使う際は

- 表示:原著作者のクレジット「13th-note」を表示してください。
- 継承:この教材を改変した結果生じた教材には、必ず、原著作者のクレジット「13th-note」を表示してください。

1 準備

どのような数が、ある数の2乗になっているか、ある程度分かっておこう.

- 1. 次の計算をしなさい.
 - 1²
 - 2^2
 - $(-3)^2$
 - $(-4)^2$
 - 5^2
 - 6^2
 - 7²
 - $(-8)^2$
 - $(-9)^2$
 - 10^2
 - 11²
 - 12²
 - $(-13)^2$
 - $(-14)^2$
 - 15^2
 - 16^2

エラトステネスのふるい

— 100 までの素数を全て求める —

 x1
 2
 3
 4
 5
 6
 7
 8
 8
 10

 11
 12
 13
 14
 15
 16
 17
 18
 19
 20

 24
 22
 23
 24
 25
 26
 27
 28
 29
 30

 31
 32
 38
 34
 35
 36
 37
 38
 39
 40

 41
 42
 43
 44
 46
 47
 48
 49
 50

 54
 52
 53
 54
 55
 66
 67
 75
 59
 60

 61
 62
 63
 64
 65
 66
 67
 67
 68
 69
 70

 71
 72
 73
 74
 75
 76
 77
 78
 79
 80

 81
 82
 83
 84
 85
 86
 87
 88
 89
 90

 91
 92
 93

まず 1 を消す (1 は素数ではない).

次に 2 以外の 2 の倍数を消す.

次に 3 以外の 3 の倍数を消す.

次に5以外の5の倍数を消す.

次に 7 以外の 7 の倍数を消す.

これで 100 までの素数だけ残る. 上の図では 3 の倍数まで消してある.

このようにして素数を見つける方法を, エラトステネスのふるいという.

(エラトステネスはギリシアの数学者, 275 ? B.C. - 195 B.C.)

ちなみに、100 までの素数を求めるためだけなら、11 の倍数は消す必要が無い。なぜなら、 $22,33,\cdots,99$ はいずれも既に消されているから。

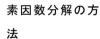
10ページ以降に備え、素因数分解を練習しよう.

- 2. 15 は 3 で $\left\{ \begin{array}{c} 15$ 切り切れる 15 は 15 の $\left\{ \begin{array}{c} 65\\ 65\\ 65 \end{array} \right\}$ である.
 - どんな数も, 必ず で割り切れる. また, その数自身で { 割り切れる } 割り切れる }
 - 約数を つしか持たない数を素数という(1は素数ではない).
- 3. 次の中から素数を選び、 \bigcirc をつけなさい.

5, 8, 14, 19, 25, 31

整数を 素数だけの積 (掛け算) で表すことを素因数分解という. どの整数の素因数分解も, 一通りに決まる.

- 4. 次の数を素因数分解しなさい.
 - (1) 12
- (2) 18
- (3) 48
- (4) 60
- (5) 90
- (6) 198



$$\begin{array}{c|c}
2 & 24 \\
2 & 12 \\
2 & 6
\end{array}$$

$$3$$
$$24 = 2^3 \times 3$$

$$\begin{array}{c}
5) 75 \\
5) 15 \\
\hline
3
\end{array}$$

$$75 = 5^2 \times 3$$

2	平方根 — 2乗する前はいくつ?
2.1	平方根とは何か、根号とは何か
■並	方根の定義 ― 2垂のもと

1.	(1) (1) (1) も (1) も (1) を (1) また。	
	(2) (2) も (2) も (2) を (2)	
	(3) 2乗すると 9 になる数は $\left(\right)$, $\left(\right)$ の 2 つある	5 .
	(4) 2 乗すると $\frac{1}{4}$ になる数は $\left(\right)$, $\left(\right)$ の 2 つあ	る

2 乗すると 25 になる数を 25 **の平方根**という.

2. 25 の平方根を全て答えなさい. (

2乗すると49になる数を49の平方根という.

3. 49 の平方根を全て答えなさい. (

平方 $\Longleftrightarrow 2$ 乗 根 \Longleftrightarrow ねっこ, もと つまり **平方根** $\Longleftrightarrow 2$ **乗(される前)のもと**

4.	(1) 36 の平方根を全て書くと $\left(\right)$ である.
	(2) 64 の $\Big($ のうち、正の値は 8 、負の値は -8 である.
	(3) 100 の平方根のうち, 正の値は , 負の値は である.
	(4) $\frac{1}{9}$ の平方根のうち、正の値は , 負の値は である.
	(5) 16 の正の () は 4 である. 25 の負の平方根は である.
	(6) $\frac{1}{16}$ の正の平方根は である. $\frac{4}{25}$ の負の平方根は である.
	(7) 面積 $49 \mathrm{cm}^2$ の正方形の 1 辺は \mathbf{cm} である.
	(8) 面積 $64\mathrm{m}^2$ の正方形の 1 辺は m ,面積 $\frac{4}{9}\mathrm{cm}^2$ の正方形の 1 辺は cm である.
	(9) 121 の平方根は であり、196 の平方根は である.

■√ (根号)の定義 — 正の平方根を表す記号

 \sqrt{x} で x **の 正の 平方根**を表す. (負の平方根は $-\sqrt{x}$)

 $\sqrt{}$ のことを、「**根号**」という.

5. 例 1 $\sqrt{16}$ とは「16 の正の平方根」のこと、つまり $\sqrt{16}=4$.

 $(1) \sqrt{49}$

(2) $\sqrt{36}$

(3) $\sqrt{\frac{1}{9}}$

 $(4) \sqrt{1}$

 $(5) -\sqrt{4}$

(6) $-\sqrt{\frac{9}{4}}$

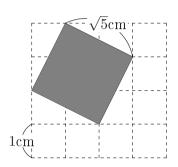
- (7) 100 に $\left(\right)$ をつけた $\sqrt{100}$ は, 100 の $\left(\right)$
- を意味し,

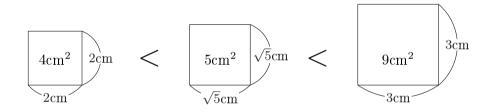
■√5 — 2 乗すると 5 になる数?

 $\sqrt{5}$ はどんな数?

2乗すると5になる数は「ある」

右の図の正方形は面積が 5 cm^2 なので(四角の数を数えてみよう), 1辺の長さは「2乗すると5になる数(単位 cm)」 = $\sqrt{5}$ cm である. では、 $\sqrt{5}$ cm とは、どれくらいの長さだろうか?





上の図より, $\sqrt{5}$ cm は 2cm より長く 3cm より短い, つまり $2<\sqrt{5}<3$

- 6. (1) 1 辺 $\sqrt{3}$ cm の正方形の面積は $\binom{1}{1}$ $\binom{1}{1}$ つまり、 $\left\{ \frac{\sqrt{3}\text{cm} \text{ it } 2\text{cm } \text{ より長い}}{\sqrt{3}\text{cm } \text{ it } 2\text{cm } \text{ より短い}} \right\}$.
 - (2) 1 辺 $\sqrt{7}$ cm の正方形の面積は $\left(\begin{array}{c} \\\\\\\\\\\\\\\end{array}\right)$ cm² であり, 1 辺が 3cm の正方形の面積より $\left\{\begin{array}{c}\\\\\\\\\\\\\\\end{array}\right\}$. つまり、 $\left\{ \frac{\sqrt{7}\text{cm}}{\sqrt{7}\text{cm}} \text{ は 3cm より長い} \right\}$ であり、 $\left\{ \frac{\sqrt{7}>3}{\sqrt{7}<3} \right\}$.
 - $\left. \right)$ cm の正方形の面積は, 29cm² であり, 1 辺が 5cm の正方形の面積より $\left\{ \begin{array}{c}$ 大きい 小さい $\end{array} \right\}$.

7. 大きさ・長さの大きい方に ○ を付けなさい.

(1) $\begin{cases} 1 \text{ 辺 3cm の正方形の面積} \\ 1 \text{ 辺 } \sqrt{6\text{cm の正方形の面積}} \end{cases}$

- $(2) \begin{cases} 3 \\ \sqrt{6} \end{cases} \qquad (3) \begin{cases} \sqrt{20} \\ 5 \end{cases} \qquad (4) \begin{cases} 6 \\ \sqrt{30} \end{cases}$

平方根の大きさ比べ

- 1. $\sqrt{5}$ は $\sqrt{6}$ よりも $\left\{\begin{array}{c} \text{大き }\nu\\ \text{小さ }\nu\end{array}\right\}$. $\sqrt{13}$ は $\sqrt{11}$ よりも $\left\{\begin{array}{c} \text{大き }\nu\\ \text{小さ }\nu\end{array}\right\}$. $\sqrt{204}$ は $\sqrt{203}$ よりも $\left\{\begin{array}{c} \text{大き }\nu\\ \text{小さ }\nu\end{array}\right\}$.
 - 3 は $\sqrt{$ に等しいので、 $\sqrt{10}$ よりも $\left\{ \begin{array}{c} 大き \nu \\ 小さ \nu \end{array} \right\}$. また、 $\sqrt{11}$ よりも $\left\{ \begin{array}{c} 大き \nu \\ 小さ \nu \end{array} \right\}$.
 - 5 は $\sqrt{$ に等しいので、 $\left\{ \frac{\sqrt{26}}{\sqrt{23}} \right\}$ よりも大きく、 $\left\{ \frac{\sqrt{27}}{\sqrt{24}} \right\}$ よりも小さい.
 - 3 は $\sqrt{$ に等しく、4 は $\sqrt{$ に等しい。だから、 $\left\{\frac{\sqrt{7}}{\sqrt{13}}\right\}$ と $\left\{\frac{\sqrt{17}}{\sqrt{15}}\right\}$ は 3 より大きく 4 より小さい。
- 2. 値の大きい方に を付けなさい.

- $(1) \begin{cases} \sqrt{18} \\ \sqrt{13} \end{cases} \qquad (2) \begin{cases} \sqrt{10} \\ 3 \end{cases} \qquad (3) \begin{cases} 4 \\ \sqrt{18} \end{cases} \qquad (4) \begin{cases} \sqrt{7} \\ 3 \end{cases} \qquad (5) \begin{cases} 6 \\ \sqrt{34} \end{cases} \qquad (6) \begin{cases} \sqrt{24} \\ 5 \end{cases}$
- $3. \sqrt{2}, \sqrt{5}, \sqrt{21}$ は、数直線上のアからオのどれかと一致する.次の に、 $m{r}$ に、 $m{r}$ からオで答えなさい.

	ア	1		ウ	エオ
Ó	1	2	3	4	5

- \bullet $\sqrt{5}$ は 2 より大きく 3 より小さいので、数直線の
- $\sqrt{2}$ は数直線の に一致し、 $\sqrt{21}$ は数直線の に一致する.
- 4. $\begin{cases} a=6 \\ a=3 \end{cases}$ のとき、 \sqrt{a} は 2 より大きい、 $1<\sqrt{a}<2$ となる a の値には $\begin{cases} a=3 \\ a=5 \end{cases}$ がある.
 - (2) $\sqrt{5} < \sqrt{a} < \sqrt{10}$ を満たす整数 (3) $2 < \sqrt{a} < 3$ を満たす整数 a を (4) $4 < \sqrt{a} < 5$ を満たす整数 a は a を全て求めなさい. 全て求めなさい. 何個あるか.
 - (5) $\begin{cases} a=6 \\ a=3 \end{cases}$ のとき、 $\sqrt{2a}$ は 3 より大きい、また、 $\begin{cases} a=2 \\ a=4 \end{cases}$ ならば $2<\sqrt{3a}<3$ を満たす、
 - (6) $5 < \sqrt{2a} < 6$ を満たす整数 a を全て求めなさい. (7) $3 < \sqrt{3a} < 5$ を満たす整数 a を全て求めなさい.

2.3 負の平方根

- 1. (1) $\sqrt{2}$ の値は, $\left\{ egin{array}{ll} 1 & 2 \\ 2 & 2 & 3 \end{array} \right\}$ の間にある. だから, $-\sqrt{2}$ の値は $\left\{ egin{array}{ll} -2 & 2 & -1 \\ -3 & 2 & -2 \end{array} \right\}$ の間にある.
 - (2) $\sqrt{7}$ は 2 より $\left\{ \begin{array}{c} 大き \\ \\ \\ \end{pmatrix}$. だから、 $-\sqrt{7}$ は -2 より $\left\{ \begin{array}{c} \\ \\ \\ \\ \end{pmatrix}$ かさい $\left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\}$.
- $2. -\sqrt{2}, -\sqrt{5}, -\sqrt{21}$ は、数直線上のアからコのどれかと一致する. 次の に、アからコで答えなさい.

アイ											
	-4	-3	-2	-1	Ò	1	2	3	$ {4}$	• <u>†</u> •	

- $\sqrt{5}$ は 2 と 3 の間なので, $-\sqrt{5}$ は -3 と -2 の間, つまり $-\sqrt{5}$ は数直線の に一致する.
- $-\sqrt{2}$ は数直線の に一致し、 $-\sqrt{21}$ は数直線の に一致する.

-(マイナス) をつけると大小が逆転する $, つまり, \ a>b\Rightarrow -a<-b$

- 3. 値の大きい方に を付けなさい.
 - $(1) \begin{cases} -\sqrt{18} \\ -\sqrt{13} \end{cases} \qquad (2) \begin{cases} -\sqrt{42} \\ -\sqrt{53} \end{cases} \qquad (3) \begin{cases} -3 \\ -\sqrt{8} \end{cases} \qquad (4) \begin{cases} -5 \\ -\sqrt{27} \end{cases} \qquad (5) \begin{cases} -4 \\ -\sqrt{14} \end{cases} \qquad (6) \begin{cases} -6 \\ -\sqrt{34} \end{cases}$
- 4. $_{\left(1\right)}$ $\left\{ egin{array}{l} a=6 \\ a=3 \end{array} \right\}$ のとき、 $-\sqrt{a}$ は -2 より大きい. $-2<-\sqrt{a}<-1$ となる a の値には $\left\{ egin{array}{l} a=2 \\ a=5 \end{array} \right\}$ がある.
 - (2) 整数 a のうち、 $-3<-\sqrt{a}<-2$ となる a を全て (3) 整数 a のうち、 $-2<-\sqrt{a}<0$ となる a を全て求求めなさい.
- 5. 例に倣って、根号を含む式を簡単にしなさい.

例 2
$$\sqrt{(-4)^2}=\sqrt{16}=4$$
, $-\left(\sqrt{\frac{1}{9}}\right)^2=-\left(\frac{1}{3}\right)^2=-\frac{1}{9}$ (実は, 計算するまでもない)

(1) $\sqrt{5^2}$

(2) $\sqrt{(-2)^2}$

 $(3) - \sqrt{(-3)^2}$

 $(4) \ - \left(\sqrt{9}\,\right)^2$

 $(5) (\sqrt{4})^2$

- $(6) \sqrt{\left(-\frac{1}{3}\right)^2}$
- 例 3 $\left(\sqrt{5}\right)^2 = 5$, $\left(-\sqrt{5}\right)^2 = 5$ $\left(\sqrt{5} \ \text{t} \ -\sqrt{5} \ \text{t}, \ \text{t} \ \text{t$
- $(1) \left(\sqrt{7}\right)^2$

 $(2) \left(-\sqrt{\frac{3}{8}}\right)^2$

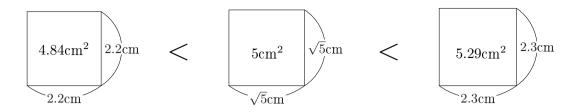
 $(3) - \left(-\sqrt{2}\right)^2$

 $(4) \ -\sqrt{\left(-\frac{2}{3}\right)^2}$

 $(5) \ (\sqrt{8})^2$

(6) $\sqrt{\left(-\frac{1}{2}\right)^2}$

 $\blacksquare\sqrt{5}$ の大きさをもっと正確に もっと細かく正方形を考えてみよう.



つまり、 $2.2 < \sqrt{5} < 2.3$ であり、 $\sqrt{5} = 2.2 \cdots$

このように計算した結果、次の値になることが知られている.

 $\sqrt{2} = 1.41421356 \cdots$ 「ひとよひとよにひとみごろ(一夜一夜に人見ごろ)」と覚える

 $\sqrt{3}=1.7320508\cdots$ 「ひとなみにおごれや(人並みにおごれや)」と覚える $\sqrt{5}=2.2360679\cdots$ 「ふじさんろくおうむなく(富士山麓オウム鳴く)」と覚える

この3つの値は覚えておくと、大体の値が簡単に計算できて便利.

また、これらの小数部分は**無限に数字が続き、数字は循環しない**. $\frac{2}{3}=0.6666\cdots$ などとは異なる.

(整数や分数にならない他の平方根も同じ — 例えば $\sqrt{7} = 2.6457513110645905905016157536 \cdots$)

(やってみよう) 2.2360679 の2乗を,電卓で計算してみよう.

- 1. 3.2 は $\sqrt{}$ に等しいので、 $\sqrt{10}$ より $\left\{ \begin{array}{c} \\ \\ \\ \\ \end{array} \right\}$ とり $\left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\}$ とり $\left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\}$ といので、 $\left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\}$ というというというという。 また、 $\frac{3}{2}$ は $\sqrt{$ に等しいので、 $\sqrt{\frac{10}{3}}$ より $\left\{\begin{array}{c} 大き \\ 小さ \\ \end{array}\right\}$.
- 2. 大きさ・長さの大きい方に \bigcirc を付けなさい.
- $(2) \left\{ \frac{\frac{3}{3}}{\sqrt{\frac{7}{2}}} \right\}$
- $(3) \left\{ \frac{\sqrt{3}}{3} \right\}$
- $(4) \left\{ \frac{\frac{1}{2}}{\sqrt{\frac{1}{2}}} \right\}$
- 3. 次の値について、大きさ・長さの大きい順に並べ、(ア) \sim (ウ)で答えなさい.
 - (1) (ア) 1 辺 $\frac{3}{2}$ cm の正方形の面積
 - (イ) 1 辺 $\sqrt{\frac{5}{3}}$ cm の正方形の面積
 - (ウ) $1 \text{ 辺 } \sqrt{2} \text{cm}$ の正方形の面積

	>	>	
--	---	---	--

- (2) $(\mathcal{T}) 1 cm$ (\checkmark) $\sqrt{\frac{7}{3}}$ cm
 - $(\dot{\mathcal{D}}) \frac{5}{2} \text{cm}$
- $(3) \quad (\mathcal{T}) \quad \sqrt{\frac{5}{3}}$

- 4. 大きい方に を付けなさい.

2.4 有理数と無理数

分数で書ける数を**有理数**という. 分数で書けない数を**無理数**という.

無理数と有理数をまとめて、実数という. イメージとしては、数直線上の数全てを実数と思えばよい.

実数
$$\left\{ egin{array}{c} {\mathbb E} {\mathbb A} & {\mathbb E} {\mathbb E} {\mathbb E} {\mathbb E} {\mathbb A} & {\mathbb E} {\mathbb E}$$

整数も小数も、分数で表すことができる $\left(3=\frac{3}{1},\ 4.23=\frac{423}{100}\right)$ ので、有理数である.

有理数の小数部分は、無いか、無限に続かないか、無限に続いても同じ数の繰り返しである(つまり、循環する). 平方根は、小数部分が繰り返されず**分数で表せない**. 全ての無理数は、小数部分が繰り返されない. 無理数には、平方根の他に、円周率 π などがある.

- $2. \frac{2}{11}$ は $0.181818\cdots$ であり、無限に"18"を繰り返す.そこでこの循環小数を $0.\dot{1}\dot{8}$ と書く. 他に、例えば $\frac{1}{3}=0.333\cdots=0.\dot{3},\ \frac{1}{7}=0.14285714285714\cdots=0.\dot{1}4285\dot{7},\ \frac{14}{11}=1.272727\cdots=1.\dot{2}\dot{7}.$ 以下も同じように循環小数で表せ.
 - $(1) \ \frac{7}{9} \qquad \qquad (2) \ \frac{14}{33} \qquad \qquad (3) \ \frac{3}{13} \qquad \qquad (4) \ \frac{38}{27}$
- 3. $0.4343\cdots = 0.43$ は循環小数なので、ある分数と等しいはずである.その分数をx とおく. x を 信すると $43.434343\cdots$ になり、これは $x = 0.434343\cdots$ に を足したものと等しい. よって、100x = 43 + x となるので、 $x = \frac{43}{99}$ と求められる.同様にして、以下も分数で表せ. (1) $0.\dot{3}\dot{9}$ (2) $0.\dot{5}$ (3) $0.\dot{3}\dot{1}\dot{5}$ (4) $1.\dot{5}8\dot{5}$

まとめその 1

- 1. $\bullet \sqrt{7}$ を7の正の (といい, 記号 $\sqrt{}$ を (という.
 - $\sqrt{14}$ は 14 の $\Big($ $\Big)$ の平方根であり、 $\Big|$ は、 $\Big(7$ の負の平方根である.
 - $\sqrt{5}$ も $-\pi$ も, $\frac{2}{3}$ と同じように無限小数だが, $\sqrt{5}$ と $-\pi$ は $\left(\right)$, $\frac{2}{3}$ は $\left(\right)$ である.
 - 普通, ものを数えるときは から始める. よって, () に 0 や負の整数は含まれない.
- 2. 大きい方に \bigcirc を付けなさい.
 - 大きい方に 〇 を付けなさい。 $(1) \left\{ \begin{array}{c} \sqrt{64} \\ \sqrt{59} \end{array} \right\} \qquad (2) \left\{ \begin{array}{c} 6 \\ \sqrt{35} \end{array} \right\} \qquad (3) \left\{ \begin{array}{c} \sqrt{\frac{11}{3}} \\ \frac{3}{2} \end{array} \right\} \qquad (4) \left\{ \begin{array}{c} -\sqrt{12} \\ -\sqrt{7} \end{array} \right\} \qquad (5) \left\{ \begin{array}{c} -4 \\ -\sqrt{15} \end{array} \right\} \qquad (6) \left\{ \begin{array}{c} -\sqrt{\frac{13}{2}} \\ -\frac{7}{2} \end{array} \right\}$
- 3. $\sqrt{6}$, $-\sqrt{11}$, $\sqrt{23}$ は, 数直線上のアからセのどれかと一致する. 次の に, アからコで答えなさい.

	ア	1	ウ			エ						
5	-4	-3	-2	-1	Ó	• 1	• ±	•	3	4	- -	•

- $\sqrt{6}$ は数直線の に一致し、 $-\sqrt{11}$ は数直線の に一致する.
- $\sqrt{23}$ は 4.5 より $\left\{\begin{array}{c} 大き \nu \\ 小さ \nu \end{array}\right\}$ よって $\sqrt{23}$ は数直線の に一致する.
- 4. 次の値について、大きさ・長さの大きい順に並べ、(ア)~(ウ)で答えなさい.
 - (1) (\mathcal{T}) $\sqrt{\frac{13}{2}}$ (2) (\mathcal{T}) $\sqrt{\frac{1}{3}}$ (3) (\mathcal{T}) $\sqrt{\frac{5}{3}}$ (4) (\mathcal{T}) $-\frac{2}{5}$ (7) -1

- (\checkmark) $-\sqrt{\frac{1}{3}}$

>	>
---	---

- 5. $_{(1)}$ $_{10}$ は $_{\sqrt{\qquad}}$ に等しく $_{11}$ は $_{\sqrt{\qquad}}$ に等しいので, $_{10}$ < $_{\sqrt{a}}$ < $_{11}$ となる整数 $_{a}$ は $\left(\right.$
 - (2) $-6 < -\sqrt{a} < -5$ となる整数 a は何個あるか.
- (3) $-3 < -\sqrt{3a} < -1$ となる整数 a を全て求めな さい.

6.
$$(1) (\sqrt{4})^2 =$$

(2)
$$\sqrt{\left(-\frac{3}{2}\right)^2} =$$

$$(3) -\sqrt{(-5)^2} =$$

- $7. \frac{4}{7}$ を循環小数で表すと
- であり, 0.148 を分数で表すと

平方根の掛け算、割り算と分母の有理化

平方根の掛け算・割り算

■平方根の×,÷の計算 —— 普通にできる! 掛け算・割り算は難しくありません. つまり,

- $\sqrt{a}\sqrt{b} = \sqrt{a} \times \sqrt{b} = \sqrt{ab}$
- $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{a} \div \sqrt{b} = \sqrt{a \div b} = \sqrt{\frac{a}{b}}$
- 1. $\sqrt{3} \times \sqrt{5}$ を 2 乗すると, $\left(\sqrt{3} \times \sqrt{5}\right)^2 = \sqrt{3} \times \sqrt{5} \times \sqrt{3} \times \sqrt{5} = (\sqrt{3})^2 \times (\sqrt{5})^2$ なので, になる. つまり, $\sqrt{3} \times \sqrt{5} = (2 乗して 15 になる正の数) =$ である.

(参考) 同じようにして, $\sqrt{a} \times \sqrt{b} = \sqrt{ab}, \ \sqrt{a} \div \sqrt{b} = \sqrt{\frac{a}{b}}$ を一般的に証明することができる.

- 2. 次の計算をしなさい. 根号を外せるものは外すこと.
 - $(1) \sqrt{3} \times \sqrt{2}$

(2) $\sqrt{3} \times \sqrt{7}$

 $(3) -\sqrt{5} \times \sqrt{7}$

- (4) $\sqrt{3} \times (-\sqrt{5})$
- (5) $-\sqrt{7} \times (-\sqrt{6})$
- (6) $\sqrt{3} \times \sqrt{27}$

(7) $\sqrt{12} \div \sqrt{4}$

(8) $\sqrt{30} \div \sqrt{6}$

(9) $\sqrt{14} \div (-\sqrt{7})$

- $(10) -\sqrt{20} \div \sqrt{5}$
- $(11) -\sqrt{15} \div (-\sqrt{10})$
- (12) $\sqrt{50} \div \sqrt{20}$

3. 次のうち, $\sqrt{6}$ と等しいものに \bigcirc をつけよ.

$$\sqrt{2} \times \sqrt{3}$$
, $\sqrt{\frac{12}{2}}$, $\sqrt{2 \times 3}$, $\sqrt{12} \div 2$, $\frac{\sqrt{12}}{\sqrt{2}}$, $\sqrt{2}\sqrt{3}$, $\sqrt{12 \div 2}$

$$\sqrt{2\times3}$$

$$\sqrt{12} \div 2$$

$$\frac{\sqrt{12}}{\sqrt{2}}$$
,

$$\sqrt{2}\sqrt{3}$$

- $a \times \sqrt{b} = a\sqrt{b} \ (\times$ は省略できる) $-2 \times \sqrt{5} = -2\sqrt{5}, \quad \frac{1}{4} \times \sqrt{2} = \frac{1}{4}\sqrt{2} \ \left(= \frac{\sqrt{2}}{4} \right)$

- 4. 次の計算をしなさい.
 - (1) $5 \times \sqrt{3}$

(2) $(-3) \times \sqrt{6}$

(3) $\frac{3}{2} \times \sqrt{10}$

 $(4) \ \sqrt{3} \times (-\frac{1}{2})$

(5) $4 \times 3\sqrt{2}$

(6) $\sqrt{7} \times \sqrt{3} \times 6$

- $(7) \ (-1) \times \sqrt{7} \times \frac{4}{5}$
- (8) $(-5) \times \sqrt{7} \times \sqrt{6} \times (-6)$ (9) $6\sqrt{5} \times \sqrt{7} \div (-4)$

 $72 = 2^2 \times 3^2 \times 2$

■√ (根号)の中を簡単にする

 $3\sqrt{5} = \sqrt{3^2} \times \sqrt{5} = \sqrt{45}$

- 5. **例 5** に倣って, 以下の数を \sqrt{a} の形で表せ.
 - (1) $3\sqrt{2}$ (2) $6\sqrt{2}$
- (3) $5\sqrt{3}$
- (4) $3\sqrt{10}$

例 6
$$\sqrt{12} = \sqrt{2^2 \times 3} = \sqrt{2^2} \times \sqrt{3} = 2\sqrt{3}$$

- **6**. **例 6** に倣って、以下の数を $a\sqrt{b}$ の形で表せ.
 - $(1) \sqrt{20}$
- (2) $\sqrt{50}$

- (3) $\sqrt{32}$
- $(4) \sqrt{96}$

← 全ての桁を足すと 9 で割れる

根号の中を簡単にするための因数分解

 $24 = 2^2 \times 6$

9 で割れる

⇔ 下 2 桁が 25 で割れる

例 7
$$3\sqrt{20} = 3\sqrt{2^2 \times 5} = 3 \times 2\sqrt{5} = 6\sqrt{5}$$

- 7. **例 7** に倣って、以下の数の根号内をできるだけ小さくしなさい.
 - (1) $6\sqrt{8}$
- (2) $5\sqrt{45}$
- (3) $2\sqrt{99}$
- $(4) \ 4\sqrt{72}$

例 8

$$(-2\sqrt{18}) \times (-3\sqrt{6}) = 6\sqrt{2} \times 3\sqrt{6} = 18\sqrt{12} = 36\sqrt{2}$$

の中を小さくしてから計算しよう.

- 8. 次の計算をしなさい. 根号の中はできるだけ簡単にすること. (参考: 慣れると 15 ページの 9 のようにできるようになる.)
 - $(1) \quad 5\sqrt{18} \times \sqrt{5} = \boxed{}$ $\sqrt{2} \times \sqrt{5}$

(2) $(-\sqrt{12}) \times 4\sqrt{8}$

(3) $\sqrt{7} \times (-3\sqrt{63})$

(4) $(-4\sqrt{30}) \times \sqrt{8}$

(5) $(-4\sqrt{8}) \times 2\sqrt{12}$

(6) $(-2\sqrt{27}) \times (-2\sqrt{18})$

4.2 分母の有理化

分母から $\sqrt{}$ (根号)を無くすことを, **分母の有理化**という.

例 9

$$\frac{1}{\sqrt{3}} = \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{3} \qquad \frac{4}{\sqrt{2}} = \frac{4 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{24\sqrt{2}}{2} = 2\sqrt{2}$$

- 1. 例 9 に倣って計算し、次の式の分母から根号を無くせ.
 - (1) $\frac{1}{\sqrt{6}}$

 $(2) \ \frac{3}{\sqrt{5}}$

(3) $\frac{3}{\sqrt{3}}$

(4) $6 \div \sqrt{3}$

(5) $6 \div \sqrt{15}$

(6) $\frac{1}{2\sqrt{3}}$

例 10

$$\frac{15}{\sqrt{90}} = \frac{5\cancel{15}}{\cancel{3}\cancel{\sqrt{10}}} = \frac{5}{\cancel{\sqrt{10}}} = \frac{\cancel{5}\cancel{\sqrt{10}}}{\cancel{10}^2} = \frac{\cancel{\sqrt{10}}}{2}$$

_ の中を小さくしてから有理化しよう.

- 2. 例 10 に倣って計算し, 次の式の分母から根号を無くせ.
 - $(1) \quad \frac{1}{\sqrt{32}} = \frac{1}{\boxed{\boxed{\boxed{\sqrt{2}}}}}$
- $(2) \ \frac{3}{\sqrt{18}}$

 $(3) \ 4 \div \sqrt{12}$

- $(5) \ 4\sqrt{3} \div \sqrt{32}$

(6) $\frac{4}{3\sqrt{18}}$

例 11

$$\sqrt{3} \div 3\sqrt{30} \times 6\sqrt{2} = \frac{\sqrt{3} \times 6\sqrt{2}}{3\sqrt{30}\sqrt{10}} = \frac{6^2}{3 \times \sqrt{5}} = \frac{2}{\sqrt{5}} = \frac{2}{5}\sqrt{5}$$

- **3**. 例 11 に倣って計算し, 次の式の分母から根号を無くせ.
 - $(1) \ \sqrt{6} \times \sqrt{10} \div 5\sqrt{30}$

(2) $\sqrt{21} \times \sqrt{2} \div 2\sqrt{7}$

 $(3) \ \sqrt{15} \div 3\sqrt{6} \times 2\sqrt{5}$

 $(4) \ \sqrt{30} \div 2\sqrt{5} \div \sqrt{10}$

4.3 およその値を求める

- 1. $\sqrt{2}=1.414$, $\sqrt{3}=1.732$, $\sqrt{5}=2.236$ と近似するとき, 以下の に正しい値を入れなさい.
 - $\sqrt{18}$ を $a\sqrt{b}$ の形にすると であり、およその値は である.
 - $\sqrt{45}$ を $a\sqrt{b}$ の形にすると であり、およその値は である.
 - $\sqrt{48}$ のおよその値は $\sqrt{20}$ のおよその値は である.
- 2. $10\sqrt{2} = \sqrt{$, $100\sqrt{2} = \sqrt{$, $1000\sqrt{2} = \sqrt{$
 - $10\sqrt{20} = \sqrt{}$, $100\sqrt{20} = \sqrt{}$, $1000\sqrt{20} = \sqrt{}$
 - $0.1 \times \sqrt{5} = \sqrt{ }$, $0.01 \times \sqrt{5} = \sqrt{ }$, $0.001 \times \sqrt{5} = \sqrt{ }$
 - $0.1 \times \sqrt{50} = \sqrt{ }$, $0.01 \times \sqrt{50} = \sqrt{ }$, $0.001 \times \sqrt{50} = \sqrt{ }$
- 3. $\sqrt{3} = 1.732$, $\sqrt{30} = 5.477$ と近似したとき, 以下の に正しい値を入れなさい.
 - $\sqrt{3000}$ は $\left\{ \frac{10\sqrt{3}}{10\sqrt{30}} \right\}$ なので、およその値は \square である.

 - $\sqrt{3000000}$ はおよそ $\boxed{}$ であり、 $\sqrt{0.003}$ はおよそ $\boxed{}$ である.
- 4. $\sqrt{2} = 1.414$, $\sqrt{5} = 2.236$ とする.
 - (1) $4\div\sqrt{2}=\frac{4}{\sqrt{2}}$ の分母を有理化する(根号を無くす)と になる

つまり、 $4\div\sqrt{2}$ のおよその値は と容易に計算できる.

- (2) $\frac{1}{\sqrt{5}}$ の分母を有理化すると になる. つまり, $\frac{1}{\sqrt{5}}$ のおよその値は である.
- 5. $\sqrt{2} = 1.414, \sqrt{5} = 2.236$ とする. 以下のおよその値を求めなさい.
 - (1) $\sqrt{20000}$

(2) $\sqrt{0.0005}$

(3) $\sqrt{50}$

(4) $\frac{3}{\sqrt{18}}$

(5) $\frac{3}{\sqrt{20}}$

5 平方根の四則計算

一つずつ, 例に倣って計算しましょう. **いずれも, 根号の中はできるだけ簡単にし, 分母に根号は残さないように.**

- 1. (1) $5\sqrt{5} + 5\sqrt{5}$
- (2) $4\sqrt{5} 3\sqrt{5}$

(3) $6\sqrt{2} + 5\sqrt{2}$

- 2. (1) $6\sqrt{7} + 3\sqrt{7}$
- (2) $-5\sqrt{7} + \sqrt{7}$

(3) $-2\sqrt{6} + 3\sqrt{6}$

- $(4) -5\sqrt{6} \sqrt{6}$
- $(5) -4\sqrt{7} + 4\sqrt{7}$
- $(6) -3\sqrt{6} + 5 \times \sqrt{6}$

 $(7) \ \frac{5}{3}\sqrt{5} - \frac{4}{3}\sqrt{5}$

(8) $-\frac{1}{4}\sqrt{5} - \sqrt{5}$

(9)
$$-\frac{5}{4} \times \sqrt{2} - \frac{\sqrt{2}}{3}$$

$$(10) \ \frac{5}{2}\sqrt{6} - 5\sqrt{6} \div 3$$

3. (1)
$$\sqrt{28} + \sqrt{7} = \sqrt{7} + \sqrt{7}$$
 $= \sqrt{7}$

$$(2) \quad 3\sqrt{18} - 3\sqrt{32} = \boxed{\boxed{\sqrt{2}} - \boxed{\boxed{\sqrt{2}}}}$$
$$= \boxed{\boxed{\sqrt{2}}}$$

(3) $\sqrt{24} + \sqrt{6}$

(4) $2\sqrt{20} - \sqrt{5}$

(5) $-\sqrt{18} + \sqrt{2}$

(6) $3\sqrt{3} - \sqrt{27}$

- (7) $3\sqrt{63} + 3\sqrt{7}$
- (8) $2\sqrt{3} \times \sqrt{18} \sqrt{24}$

$$(9) -2\sqrt{20} - 2\sqrt{45} + 3\sqrt{5}$$

(10)
$$\sqrt{28} - 4\sqrt{7} + 2\sqrt{21} \times \sqrt{3}$$

4. (1)
$$-\frac{1}{2}\sqrt{28} - \frac{5}{3}\sqrt{7}$$

$$(2) \ -\frac{3}{4}\sqrt{7} + \frac{3}{4}\sqrt{28}$$

(3)
$$\frac{3}{4}\sqrt{48} - \frac{3}{2}\sqrt{12} + \frac{4}{3}\sqrt{27}$$

(4)
$$-\frac{5}{2}\sqrt{45} + \frac{5}{2}\sqrt{5} + \frac{3}{2}\sqrt{10} \times \sqrt{2}$$

例 15

_____の中が異なる 2 つの数は、足すことも引くこともできない!!

$$3\sqrt{5} + 2\sqrt{5} + 2\sqrt{3} - 3\sqrt{3} = 5\sqrt{5} - \sqrt{3}$$
これでおしまい!!

$$5. (1) 2\sqrt{6} + 3\sqrt{5} + 6\sqrt{5}$$

(2)
$$5\sqrt{6} - \sqrt{6} - \sqrt{7} - 3\sqrt{7}$$

(3)
$$\sqrt{6} + 2\sqrt{6} + 3\sqrt{5} + 5\sqrt{5}$$

$$(4) -4\sqrt{6} + 3\sqrt{5} + 4\sqrt{6} - 3\sqrt{5}$$

6. (1)
$$\sqrt{63} + 2\sqrt{48} + \sqrt{7} + \sqrt{27}$$

(2)
$$3\sqrt{5} - 2\sqrt{8} - \sqrt{2} + 3\sqrt{20}$$

(3)
$$-2\sqrt{5} + 2\sqrt{20} - \sqrt{8} + 2\sqrt{2}$$

$$(4) -2\sqrt{54} - \sqrt{24} + \sqrt{32} - \sqrt{2}$$

$$(5) \ \ 3\sqrt{7} - 2\sqrt{27} - \sqrt{28} - 3\sqrt{12}$$

(6)
$$-\frac{5}{2}\sqrt{7} + \frac{2}{3}\sqrt{3} + \frac{4}{3}\sqrt{12} - 3\sqrt{28}$$

例 16 (有理化付き)
$$\frac{2}{\sqrt{3}} + \frac{1}{6} \underbrace{\sqrt{12}}_{2\sqrt{3}} = \frac{2}{3} \sqrt{3} + \frac{1}{3} \sqrt{3} = \sqrt{3}$$

7.
$$(1) \frac{6}{\sqrt{2}} + 3\sqrt{2}$$

(2)
$$\frac{6}{\sqrt{3}} - \sqrt{3}$$

(3)
$$2\sqrt{2} - \frac{4\sqrt{3}}{\sqrt{6}}$$

$$(4) -\frac{4}{\sqrt{6}} + \frac{3}{4}\sqrt{24}$$

$$(5) \ \frac{6\sqrt{2}}{\sqrt{45}} + \sqrt{\frac{5}{2}}$$

(1)
$$6 \div \sqrt{5} - 2 \times \sqrt{5} + \sqrt{5}$$

(2)
$$2\sqrt{2} \div \sqrt{6} - \frac{6}{\sqrt{3}} + 2 \times \sqrt{3}$$

$$(3) \ -\sqrt{8} - 3\sqrt{2} \div 2 + \sqrt{\frac{1}{18}}$$

(4)
$$\frac{3}{2} \times \sqrt{6} - 4 \div \sqrt{54} + 3\sqrt{24} \div 4$$

9.
$$(1)$$
 $\sqrt{5} \times \underbrace{\sqrt{10}}_{\sqrt{5} \text{ cellats}} = \sqrt{5} \times \sqrt{5} \times \sqrt{\boxed{}}$ $=$

9. (1)
$$\sqrt{5} \times \sqrt{10} = \sqrt{5} \times \sqrt{5} \times \sqrt{10}$$
 (2) $\sqrt{14} \times \sqrt{21} = \sqrt{7} \times \sqrt{10} \times \sqrt{7} \times \sqrt{10} = 7 \times \sqrt{10}$

例 17 (分配法則 — 掛け算)

$$-\sqrt{5}\left(\sqrt{3}-\sqrt{2}
ight)=-\sqrt{15}+\sqrt{10}$$
後ろにも掛けることを忘れない!!

10. (1) $\sqrt{6} (\sqrt{6} - \sqrt{10})$

(2)
$$\sqrt{3} \left(\sqrt{10} + \sqrt{27} \right)$$

(3)
$$\sqrt{2} \left(-\sqrt{10} - 2\sqrt{6} \right)$$

(4)
$$\sqrt{3} \left(-2\sqrt{3} - \sqrt{15} \right)$$

例 18 (分配法則 — 割り算)

$$\left(\sqrt{15}-\sqrt{10}
ight)\div\sqrt{5}=-\sqrt{3}+\underline{\sqrt{2}}$$
後ろも割ることを忘れない!!

11. (1)
$$(\sqrt{15} - \sqrt{6}) \div \sqrt{3}$$

(2)
$$\left(-\sqrt{20} + \sqrt{10}\right) \div \sqrt{5}$$

(3)
$$(\sqrt{10} - \sqrt{6}) \div \sqrt{2}$$

(4)
$$\left(-\sqrt{21} + \sqrt{14}\right) \div \sqrt{7}$$

例 19 (分配法則 — 分母の有理化と共に)

$$\frac{2\sqrt{5}-\sqrt{3}}{\sqrt{5}} = \frac{\left(2\sqrt{5}-\sqrt{3}\right)\times\sqrt{5}}{\sqrt{5}\times\sqrt{5}} = \frac{10-\sqrt{15}}{5}$$
 これは約分できない!!(参考:下の例 20)

12. (1)
$$\frac{\sqrt{3} + \sqrt{2}}{\sqrt{2}}$$

$$(2) \ \frac{\sqrt{15} - \sqrt{3}}{\sqrt{5}}$$

(3)
$$\frac{\sqrt{3}+2}{2\sqrt{2}}$$

$$(4) \left(\sqrt{5} - 3\right) \div 3\sqrt{2}$$

例 20
$$\frac{3\sqrt{5} - \sqrt{3}}{2\sqrt{6}} = \frac{(3\sqrt{5} - \sqrt{3}) \times \sqrt{6}}{2\sqrt{6} \times \sqrt{6}} = \frac{3\sqrt{30} - 3\sqrt{2}}{12} = \frac{3\left(\sqrt{30} - \sqrt{2}\right)}{12} = \frac{\sqrt{30} - \sqrt{2}}{4}$$

13. (1)
$$\frac{2\sqrt{3} + \sqrt{2}}{2\sqrt{6}}$$

(2)
$$\frac{5\sqrt{2}-2\sqrt{5}}{3\sqrt{5}}$$

(3)
$$\frac{\sqrt{18} - 2\sqrt{3}}{2\sqrt{2}}$$

(4)
$$(2\sqrt{3} + \sqrt{6}) \div 2\sqrt{15}$$

14. (1)
$$\sqrt{10} \left(-\sqrt{20} - \sqrt{24} \right) + \sqrt{3} \left(\sqrt{20} + \sqrt{6} \right)$$

(2)
$$\sqrt{6} \left(\sqrt{32} + 2\sqrt{15} \right) + \frac{6\sqrt{15} - 3\sqrt{2}}{\sqrt{6}}$$

(3)
$$\frac{\sqrt{5} + \sqrt{3}}{3} \times \sqrt{2} - \frac{\sqrt{6} + \sqrt{2}}{\sqrt{3}}$$

6 まとめその2

- 1. $\frac{2}{\sqrt{3}}$, $\sqrt{\frac{2}{3}}$, $\frac{\sqrt{2}}{3}$ のうち, $\sqrt{3}$ ÷ $\sqrt{2}$ と同じ値のものはのは である.
 - $\sqrt{2}=1.414,\ \sqrt{3}=1.732,\ \sqrt{5}=2.236\$ のとき, $\sqrt{200}+\sqrt{300}-\sqrt{500}$ のおよその値は である.
 - $2\sqrt{11}$ は $\sqrt{$ に等しく、 $3\sqrt{6}$ は $\sqrt{$ に等しい。よって、 $\left\{ \frac{2\sqrt{11}}{3\sqrt{6}} \right\}$ の方が大きい.
 - $6\sqrt{2}$ と $4\sqrt{5}$ では $\left\{ \begin{matrix} 6\sqrt{2} \\ 4\sqrt{5} \end{matrix} \right\}$ の方が大きく, $-2\sqrt{6}$ と $-3\sqrt{2}$ では $\left\{ \begin{matrix} -2\sqrt{6} \\ -3\sqrt{2} \end{matrix} \right\}$ の方が大きい.
- 2. 次の計算をしなさい. いずれも、根号の中はできるだけ簡単にし、分母に根号は残さないように.

(1)
$$\sqrt{28} - 3\sqrt{7}$$

(2)
$$\frac{3}{4}\sqrt{20} - \frac{4}{3}\sqrt{45}$$

(3)
$$\sqrt{\frac{1}{8}} - \sqrt{2}$$

(4)
$$\frac{3}{4}\sqrt{32} - \frac{3}{2}\sqrt{8}$$

(5)
$$\frac{\sqrt{27}}{4} + \frac{5}{3} \times \sqrt{3}$$

(6)
$$\frac{2}{3}\sqrt{6} - \frac{2}{\sqrt{24}}$$

(7)
$$-\sqrt{6} + 2\sqrt{6} - \frac{6}{\sqrt{6}}$$

(8)
$$\frac{1}{2}\sqrt{28} - 2\sqrt{6} + \frac{1}{2}\sqrt{24} - 2\sqrt{7}$$

$$(9) -\frac{3}{2}\sqrt{12} + \frac{5}{2}\sqrt{24} + 3\sqrt{6} + \frac{3}{4}\sqrt{48}$$

$$(10) -\frac{2}{3}\sqrt{6} + \frac{3}{\sqrt{6}}$$

$$(11) -\frac{7}{\sqrt{2}} - 2\sqrt{8}$$

$$(12) \ 3\sqrt{45} + \frac{5}{\sqrt{20}}$$

(13)
$$\sqrt{5} - 2\sqrt{20} - 2 \div \sqrt{5}$$

$$(14) -6 \times \sqrt{2} + \frac{6}{\sqrt{8}} - 4 \div \sqrt{2}$$

$$(15) -\frac{6}{\sqrt{2}} - 3\sqrt{18} - \frac{4}{\sqrt{8}}$$

$$(16) \ -\frac{6}{\sqrt{3}} + 2\sqrt{3} + \frac{4}{3}\sqrt{12}$$

(17)
$$\sqrt{10} \left(\sqrt{2} + \sqrt{6} \right)$$

(18)
$$\sqrt{5} \left(2\sqrt{5} - \sqrt{15}\right)$$

(19)
$$(\sqrt{75} - 2\sqrt{15}) \div \sqrt{15}$$

(20)
$$\frac{-\sqrt{32}-2\sqrt{15}}{2} \times \sqrt{6}$$

$$(21) \ \frac{\sqrt{5}+2}{\sqrt{3}} \times \sqrt{15}$$

(22)
$$\sqrt{3} \left(-\sqrt{6} + \sqrt{15}\right) - \sqrt{15} \left(\sqrt{32} + \sqrt{3}\right)$$

(23)
$$\sqrt{2} \left(\sqrt{6} + \sqrt{20} \right) - \sqrt{5} \left(-\sqrt{15} - \sqrt{8} \right)$$

$$(24) \ \frac{\sqrt{3}+1}{\sqrt{6}} - \frac{\sqrt{5}+\sqrt{3}}{\sqrt{2}}$$

$$(25) \ \frac{\sqrt{6} - \sqrt{10}}{\sqrt{2}} + \frac{\sqrt{30} - 3\sqrt{2}}{\sqrt{6}} - \frac{2\sqrt{15} + \sqrt{3}}{\sqrt{3}}$$

応用問題

- $7.1 \sqrt{}$ が自然数になるためには? $-\sqrt{}$ の中が、自然数の 2 乗になればよい
- 1. 次のうち、値が自然数になるものを全て選べ.

- (\mathcal{T}) $\sqrt{3\times5}$
- $(\checkmark) \quad \sqrt{3^2 \times 2^2}$
- (ウ) $\sqrt{2^4 \times 5^2}$
- (\pm) $\sqrt{3^3}$
- $3. \sqrt{2n}$ が自然数となるような n の値を全て選べ.

 - $(\mathcal{T}) \quad n=3 \qquad (\mathcal{A}) \quad n=4 \qquad (\dot{\mathcal{D}}) \quad n=5$

 - (エ) n=2 (オ) $n=2\times 3$ (カ) $n=2\times 4$
 - (\dagger) $n = 2 \times 5$ (\mathcal{I}) $n = 2 \times 6$ (\mathcal{I}) $n = 2 \times 7$
 - (\exists) $n=2\times 8 \ (\forall)$ $n=2\times 9 \ (\triangleright)$ $n=2\times 10$

2. 次のうち、値が自然数になるものを全て選べ.

- (\mathcal{T}) $\sqrt{2^2 \times 3^2}$
- $(\checkmark) \quad \sqrt{2 \times 5}$
- (ウ) $\sqrt{3^4 \times 5^2}$
- (\pm) $\sqrt{2^2 \times 3^3}$
- 4. $\sqrt{20n}$ は $\sqrt{\qquad}$ の 2 倍に等しい. $\sqrt{20n}$ が自然数になるような n の値を全て選べ.
 - $(\mathcal{T}) \quad n=2 \qquad (\mathcal{A}) \quad n=3 \qquad (\dot{\mathcal{D}}) \quad n=4$

- (エ) n=5 (オ) $n=5\times 3$ (カ) $n=5\times 4$
- (\dagger) $n = 5 \times 5$ (\mathcal{D}) $n = 5 \times 6$ (\mathcal{D}) $n = 5 \times 7$
- (\supset) $n = 5 \times 8$ (\forall) $n = 5 \times 9$ (\triangleright) $n = 5 \times 10$
- 5. $\sqrt{3n}$ が自然数になるような自然数 n の値を, 小さい順に3つ挙げよ.
- $6. \sqrt{8n}$ が自然数になるような自然数 n の値を, 小さい順に3つ挙げよ.
- $\sqrt{15n}$ が自然数になるような自然数 n の値を. 小さい順に3つ挙げよ.
- $8. \sqrt{96n}$ が自然数になるような自然数 n の値を, 小さい順に3つ挙げよ.

9. $\sqrt{\frac{5 \times 3^2}{n}}$ が自然数になるような n の値を

全て選べ.

- (\mathcal{T}) n=1
- (\checkmark) n=3
- (ウ) n = 5
- (\bot) $n = 3^2$
- $(\cancel{\tau})$ $n = 5 \times 3$
- (\mathcal{D}) $n=5\times3^2$
- 11. $\sqrt{\frac{18}{n}}$ が自然数になるような自然数 n の値を, 12. $\sqrt{\frac{96}{n}}$ が自然数になるような自然数 n の値は, 全て挙げよ.

10. $\sqrt{\frac{3 \times 2^2}{n}}$ が自然数になるような自然数 n の値は,

,	

7.2 展開公式と平方根 — 根号を文字と思って公式を使い、計算する

例 21
$$((x+a)(x+b)$$
 の利用)

$$(x+2)(x-4) = x^2 - 2x - 8$$

 $(\sqrt{3}+2)(\sqrt{3}-4) = (\sqrt{3})^2 - 2\sqrt{3} - 8 = -5 - 2\sqrt{3}$

1.
$$(1) (\sqrt{6} + 3)(\sqrt{6} + 2)$$

(2)
$$(\sqrt{3}-3)(\sqrt{3}-4)$$

(3)
$$(\sqrt{2}-5)(\sqrt{2}+3)$$

$$(4) (\sqrt{3}-1)(\sqrt{3}+3)$$

(5)
$$(3\sqrt{2}-1)(3\sqrt{2}+5)$$

(6)
$$(2\sqrt{6}-4)(2\sqrt{6}+2)$$

例 22 $((x+a)^2$ の利用)

$$(x+5)^2 = x^2 + 10x + 25$$

 $(\sqrt{2}+5)^2 = (\sqrt{2})^2 + 10\sqrt{2} + 25 = 27 + 10\sqrt{2}$

$$(x+5)^2 = x^2 + 10x + 25$$
 に注意!

2.
$$(1) (\sqrt{3} + 5)^2$$

$$(2) (\sqrt{2}-1)^2$$

$$(3) (\sqrt{11} - 2)^2$$

$$(4) (\sqrt{6}+4)^2$$

$$(5) (\sqrt{7}+1)^2$$

$$(6) (2\sqrt{6}-3)^2$$

例 23 ((x+a)(x-a) の利用)

$$(x+3)(x-3) = x^2 - 9$$

 $(\sqrt{5}+3)(\sqrt{5}-3) = (\sqrt{5})^2 - 9 = -4$

3.
$$(1) (\sqrt{3}+1)(\sqrt{3}-1)$$

(2)
$$(\sqrt{2}+5)(\sqrt{2}-5)$$

(3)
$$(\sqrt{5}-4)(\sqrt{5}+4)$$

(4)
$$(\sqrt{2}+3)(\sqrt{2}-3)$$

(5)
$$(2\sqrt{7}-2)(2\sqrt{7}+2)$$

(6)
$$(2\sqrt{3}-3)(2\sqrt{3}+3)$$

4. (1)
$$(\sqrt{5}-2)(\sqrt{5}-4)-(2\sqrt{5}-3)^2$$

(2)
$$(\sqrt{5}+4)(\sqrt{5}-5)+(\sqrt{5}+5)(\sqrt{5}+3)$$

(3)
$$(3\sqrt{2}+5)(3\sqrt{2}+1)-(\sqrt{3}-1)^2$$

$$(4) (\sqrt{7}+3)(\sqrt{7}-3) - (2\sqrt{6}+3)(2\sqrt{6}-4)$$

5. •
$$x = \sqrt{3} + 2$$
 のとき, $x - 4 =$ である. よって,
$$x^2 - 4x = x(x - 4) = \left(\begin{array}{c} \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \end{array} \right) = \begin{bmatrix} \\ \\ \end{array}$$

•
$$x = \sqrt{13} - 5$$
 のとき, $x + 10 =$ である. よって,
$$x^2 + 10x + 6 = x(x + 10) + 6 =$$

•
$$a = 2\sqrt{3} + 3$$
 のとき, $a^2 - 6a + 3 =$ である.

7.3 a+b, ab, a-b を利用した計算

(参考) a+b は、a と b を入れ替えると b+a であり、式としては a+b と同じ、 a^2+b^2 も、a と b を入れ替えた b^2+a^2 と同じ式になる。このような式を「対称式」といい、特に a+b、ab を基本対称式という。

また、a-b は、a と b を入れ替えると b-a であり、元の a-b の (-1) 倍である.このような式は「**交代式**」と呼ばれる. a^2-b^2 なども交代式である.

- - a^2+b^2 は, $(a+b)^2$ から $a^2+b^2=$ () である.
 - (3) a-b= () を使うと, $a^2-b^2=(a+b)(a-b)=$ () である.
- $3. \quad m = \sqrt{6} + \sqrt{5}, \ n = \sqrt{6} \sqrt{5}$ のとき, 以下の値を求めなさい.
 - (1) m + n

(2) mn

(3) m - n

- (4) $m^2 + 3mn + n^2$
- (5) $m^2 + n^2$

(6) $m^2 - n^2$

a, b の値が分からなくても, a+b, ab の値さえ分かっていれば, a^2+b^2 などは計算できる.

- 4. $a+b=\sqrt{5}$, ab=1 のとき, 以下の式の値を計算せよ.
 - $(1) (a+b)^2$

- (2) $a^2 + 3ab + b^2$
- (3) $a^2 + b^2$

- 5. $p = \sqrt{7} + \sqrt{3}$, $q = \sqrt{7} \sqrt{3}$ のとき, 以下の値を求めなさい.
 - (1) p + q

(2) pq

 $(3) (p+q)^2$

- (4) $p^2 + 5pq + q^2$
- (5) $p^2 + q^2$

(6) $p^2 - q^2$

- 6. $a = \sqrt{5} + \sqrt{7}$, $b = \sqrt{5} \sqrt{7}$ のとき, 以下の値を求めなさい.
 - (1) a + b

(2) *ab*

(3) $a^2 - ab + b^2$

- 7. $m=3\sqrt{2}+2,\;n=3\sqrt{2}-2\;$ のとき、以下の値を求めなさい.
 - (1) $m^2 + 4mn + n^2$
- (2) $m^2 + n^2$

(3) $m^2 - n^2$

 $(4) \frac{1}{m} - \frac{1}{n}$

- $(5) \ \frac{n}{m} \frac{m}{n}$
- $8. \ a+b=\sqrt{13}, \ ab=3 \$ のとき, 以下の式の値を計算せよ.
 - $(1) (a+b)^2$

- (2) $a^2 + 3ab + b^2$
- (3) $a^2 + b^2$

- (4) $a^2 ab + b^2$
- $(5) (a-b)^2$

7	7 4	整数部分	بر	小数	部を	١
- (. 4	ᅲᄶᄊᄞᄼ	_	1」、女人	. ロリノ.	J

- - \bullet $\sqrt{5}$ の整数部分は $\left\{\begin{array}{c} \sqrt{5}-2\\0.236 \end{array}\right\}$ である.
 - \bullet $\sqrt{3}$ の整数部分は , 小数部分は である.
 - \bullet $\sqrt{8}$ の整数部分は , 小数部分は である
 - $\sqrt{2}+1$ は $\begin{Bmatrix} 2 \\ 3 \end{Bmatrix}$ より大きく $\begin{Bmatrix} 3 \\ 4 \end{Bmatrix}$ より小さい.

つまり、 $\sqrt{2}+1$ の整数部分は , 小数部分は である.

- $2. \sqrt{6}$ の整数部分を a, 小数部分を b とするとき,

 - a+b= である. つまり,整数部分と $\left(\begin{array}{c} \\ \\ \end{array}\right)$ を足せば,元の数になる.

 $a^2-b^2=\left(\begin{array}{cc} & & \\ & & \\ \end{array}\right)(a-b)$ と因数分解できるので, $a^2-b^2=$ である.

- $3. \sqrt{12}$ の整数部分を a, 小数部分を b とするとき, 以下の値を計算しなさい.

(1) a

 $(2) \ b$

- (3) a b
- (4) $a^2 b^2$
- 4. $\sqrt{7}-1$ の整数部分を a, 小数部分を b とするとき, 以下の値を計算しなさい.

(1) b

- (2) a b
- (3) 2a + b
- $(4) b^2 + 4b$
- 5. $\sqrt{18}-3$ の整数部分を a, 小数部分を b とするとき, 以下の値を計算しなさい.

 $(1) b^2 + 8b$

 $(2) (a+b)^2 - (a-b)^2$